Chapter

COMPARING THE MEANS OF
MANY INDEPENDENT SAMPLES

Objectives
In this chapter we study analysis of variance (ANOVA). We will
e discuss when and why an analysis of variance may e describe interactions and main effects in factorial
be conducted. ANOVA models.
¢ develop the intuition behind the ANOVA model. e construct contrasts and other linear combinations
e demonstrate how ANOVA calculations are carried of means.
out. e introduce and compare several methods for dealing
e describe and examine the conditions under which with multiple comparisons.
ANOVA is valid.
¢ see how blocking is used and how to conduct ran-
domized blocks ANOVA.

[ 1.1 Introduction

In Chapter 7 we considered the comparison of two independent samples with re-
spect to a quantitative variable Y. The classical techniques for comparing the two
sample means Y; and Y, are the test and the confidence interval based on Student’s
t distribution. In the present chapter we consider the comparison of the means of /
independent samples, where / may be greater than 2. The following example illus-
trates an experiment with / = 5.

m Sweet Corn When growing sweet corn, can organic methods be used successfully to
1LLI control harmful insects and limit their effect on the corn? In a study of this question
researchers compared the weights of ears of corn under five conditions in an exper-
iment in which sweet corn was grown using organic methods. In one plot of corn a
beneficial soil nematode was introduced. In a second plot a parasitic wasp was used.
A third plot was treated with both the nematode and the wasp. In a fourth plot a
bacterium was used. Finally, a fifth plot of corn acted as a control; no special treat-
ment was applied here. Thus, the treatments were

Treatment 1: Nematodes
Treatment 2: Wasps

Treatment 3: Nematodes and wasps
Treatment 4: Bacteria

Treatment 5: Control

414
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Ears of corn were randomly sampled from each plot and weighed. The results are
given in Table 11.1.1 and plotted in Figure 11.1.1." Note that in addition to the dif-
ferences between the treatment means, there is also considerable variation within
each treatment group. -

We will discuss the classical method of analyzing data from 7/ independent sam-
ples. The method is called an analysis of variance, or ANOVA. In applying analysis
of variance, the data are regarded as random samples from / populations. We will

denote the means of these populations as wy, iy, . . . , ;7 and the standard deviations
aso1,02,...,0].
Table I11.1.1 Weights (ounces) of ears of sweet corn
Treatment
1 2 3 4 5
16.5 11.0 8.5 16.0 13.0
15.0 15.0 13.0 14.5 10.5
11.5 9.0 12.0 15.0 11.0
12.0 9.0 10.0 9.0 10.0
12.5 11.5 12.5 10.5 14.0
9.0 11.0 8.5 14.0 12.0
16.0 9.0 9.5 12.5 11.0
6.5 10.0 7.0 9.0 9.5
8.0 9.0 10.5 9.0 18.5
14.5 8.0 10.5 9.0 17.0
7.0 8.0 13.0 6.5 10.0
10.5 5.0 9.0 8.5 11.0
Mean 11.5 9.6 10.3 11.1 12.3
SD 35 2.4 2.0 3.1 29
n 12 12 12 12 12
Figure 1'1.1.1 Weights of o
ears of corn receiving five 18 —
different treatments B
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Figure 11.1.2 Comparing
four population means
requires six comparisons

Why Not Repeated t Tests?

It is natural to wonder why the comparison of the means of / samples requires any
new methods. For instance, why not just use a two-sample ¢ test on each pair of sam-
ples? There are three reasons why this is not a good idea.

1. The problem of multiple comparisons The most serious difficulty with a naive
“repeated ¢ tests” procedure concerns Type I error: The probability of false rejec-
tion of a null hypothesis may be much higher than it appears to be. For instance,
suppose I = 4 and consider the null hypothesis that all four population means
are equal (Hp:py = pp = ps3 = py) versus the alternative hypothesis that the
four means are not all equal.* Among four means there are six possible pairs
to compare. The pairings are displayed in Figure 11.1.2. The six resulting
hypotheses are

Hytpy = pp Hotpy = ps Hotpg = py
Hotpy = ps Hotpo = g Hotps = py

S

Let’s consider the risk of a Type I error for testing our primary null hypothesis
that all four means are equal by conducting six separate ¢ tests. If any of the six ¢
tests finds a significant difference between a pair of means, we would reject our
primary null hypothesis that all four means are equal. A Type I error would
occur if any of the six ¢ tests found a significant difference between a pair of
means when in fact all four means are equal. Thus, using & = 0.05 for each of the
individual ¢ tests carries an overall risk of a Type I error that is greater than 5%.

Our intuition might suggest that the risk of an overall Type I error in the
preceding example should be 6 X 0.05 = 0.3 = 30% (in each of six tests we
had a 5% chance of wrongly finding evidence for a difference), but this is not
the case. The computation of this overall Type I error rate is more complex.
Table 11.1.2 displays the overall risk of Type I error, that is,

Overall Type I error risk = Probability that at least one of the  tests will re-
ject its null hypothesis, when in fact w; = u, = puz = -+ = u,.

Table 11.1.2 Overall risk of Type I error in
using repeated ¢ tests at « = 0.05

Overall risk

0.05
0.12
0.20
0.37
0.51
10 0.63

0 N AW NN

“In Section 11.2 we will elaborate more on the form of this alternative hypothesis.
"Table 11.1.2 was computed assuming that the sample sizes are large and equal and that the population distribu-
tions are normal with equal standard deviations.



Figure 11.1.3 (a) Hj true,
(b) H false, with small SDs
for the groups
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If I = 2,then the overall risk is 0.05, as it should be, but with larger 7 the risk
increases rapidly; for / = 61itis 0.37.Itis clear from Table 11.1.2 that the researcher
who uses repeated ¢ tests is highly vulnerable to Type I error unless / is quite small.

The difficulties illustrated by Table 11.1.2 are due to multiple comparisons —
that is, many comparisons on the same set of data. These difficulties can be
reduced when the comparison of several groups is approached through ANOVA.

2. Estimation of the standard deviation. The ANOVA technique combines infor-
mation on variability from all the samples simultaneously. This global sharing
of information can yield improved precision in the analysis.

3. Structure in the groups. In many studies the logical structure of the treatments
or groups to be compared may inspire questions that cannot be answered by
simple pairwise comparisons. For example, we may wish to study the effects of
two experimental factors simultaneously. ANOVA can be used to analyze data
in such settings (see Sections 11.6,11.7, and 11.8).

A Graphical Perspective on ANOVA

When data are analyzed by analysis of variance, the usual first step is to test the fol-
lowing global null hypothesis:

Hypy = pp = pz = =y

which asserts that all the population means are equal. A statistical test of Hj will be
described in Section 11.4. However, we will first consider analysis of variance from a
graphical perspective.

Consider the dotplots shown in Figure 11.1.3(a). These dotplots were generated
in a setting in which H,) is true. The sample means, which are shown as lines on the
graph, differ from one another only as a result of chance error. For the data shown
in Figure 11.1.3(b), H, is false. The sample means are quite different—there is sub-
stantial variability between the group means, which provides evidence that the cor-
responding population means (w1, po, 13, and uy) are not all equal. In this particular
case, it appears that u; and p, differ from w3 and py.
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(a) (b)

Figure 11.1.4 shows a situation that is less clear. In fact, H is false here —the
means in Figure 11.1.4 are identical to those in Figure 11.1.3(b). However, the indi-
vidual group standard deviations are quite large, which makes it hard to tell that the
population means differ.*

*Note the change in scale on the vertical axis in Figure 11.1.4.
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Figure 11.1.4 H false,
with large SDs for the
groups
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We need to know how much inherent variability there is in the data before we
can judge whether a difference in sample means is fairly small and attributable to
chance or whether it is too large to be due to chance alone. As Figures 11.1.3 and
11.1.4 illustrate, in order to find compelling evidence for a difference in popula-
tion means, not only must there be (1) variation among the group means, but it
must be large relative to (2) the inherent variability in the groups. It is through
comparing the relative magnitudes of these two kinds of variability —this “analysis
of variance” —that we are able to make an inference about means.

A Look Ahead

If the global null hypothesis that u; = u, = u3 = --- = u; is rejected, then the
data provide sufficient evidence to conclude that at least some of the u’s are un-
equal; the researcher would usually proceed to detailed comparisons to determine
the pattern of differences among the w’s. If there is a lack of evidence against the
global null hypothesis, then the researcher might choose to construct one or more
confidence intervals to characterize the lack of significant differences among
the u’s.

All the statistical procedures of this chapter—the test of the global null hy-
pothesis and various methods of making detailed comparisons among the
means—depend on the same basic calculations. These calculations are presented
in Section 11.2.

[1.2 The Basic One-Way Analysis of Variance

The ANOVA model presented in Section 11.1 that compares the means of three or
more groups is called a one-way ANOVA. The term “one-way” refers to the fact that
there is one variable that defines the groups or treatments (e.g.,in the sweet corn ex-
ample the treatments were based on the type of harmful insect/bacteria). Later in
this chapter we will examine other ANOVA models such as the randomized com-
plete block ANOVA (Section 11.6) and the two-way ANOVA model (Section 11.7),
which consider the impact of having more than one variable defining the groups or
how treatments are assigned to experimental units.

In this section we present the basic one-way ANOVA calculations that are used
to describe the data and to facilitate further analysis. In the previous section we
noted that if the between-group mean variability is large relative to within-group
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variability, we will take this as evidence against the null hypothesis that the popula-
tion means are all equal. Hence, the analysis of variance of I samples, or groups, be-
gins with the calculation of quantities that describe the variability of the data
between the groups and within the groups.* (For clarity, in this chapter we will often
refer to the samples as “groups” of observations.)

Notation

To describe several groups of quantitative observations, we will use two subscripts:
one to keep track of group membership and the other to keep track of observations
within the groups. Thus, we will denote observation j in group i as

y;j = observationj in groupi

Thus, the first observation in the first group is y1, the second observation in the first
group is y1y, the third observation in the second group is y,3, and so on.
We will also use the following notation:

1

n; = number of observations in groupi

number of groups

y; = mean for groupi

s; = standard deviation for groupi

The total number of observations is

Finally, the grand mean —the mean of all the observations—is

I n
2, 2%
i=1j=1

<l

ne

Equivalently we can express y as a weighted average of the group means

I I
Znﬁi Zniyi
i= i=

?: 7 =

2
13

The following example illustrates this notation.

ne

Weight Gain of Lambs Table 11.2.1 shows the weight gains (in two weeks) of young
lambs on three different diets. (These data are fictitious, but are realistic in all re-
spects except for the fact that the group means are whole numbers.)”

The total number of observations is

no=3+5+4=12

*QGrammatically speaking, the word among should be used rather than between when referring to three or more
groups; however, we will use “between” because it more clearly suggests that the groups are being compared
against each other.
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Table 11.2.1 Weight gains of lambs (Ib)"
Diet 1 Diet 2 Diet 3
8 9 15
16 16 10
9 21 17
11 6
18
n; 3 5 4
Sum = 37, y; 33 75 48
Mean = Yy; 11.000 15.000 12.000
SD =g 4.359 4.950 4.967
“Extra digits are reported for accuracy of subsequent calculations.

and the total of all the observations is
I n
> Dyij =33+ 75+ 48 = 156 or, equivalently 3 X 11 +5 X 15 + 4 X 12 = 156
i=1j=1
The grand mean is

156
= 6 =131b |

<l

If the sample sizes (n;’s) are all equal, then the grand mean y is just the ordinary av-
erage (i.e., mean) of the group means (the y;’s); but if the sample sizes are unequal,
this is not the case. For instance, in Example 11.2.1 note that

11+ 15 + 12

# 13
3

Measuring Variation within Groups

A combined measure of variation within the 7 groups is the pooled standard devia-
tion spg0led, Often simply denoted as just s, which is computed as follows.™

— Pooled Standard Deviation

i(”i — 1)s7 i(”i - 1)s7
= _ =
i(”i ) n.— 1

i=1

Spooled = § =

*There is no ambiguity in this notation since s; (i.e.,s with a subscript) denotes an individual group sample standard
deviation.
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Figure 11.2.1 Examining
within-group standard
deviations. Plot (a) displays
the weight gain data from

Table 11.2.1 with s = 4.831.

Plot (b) displays modified
data with the same
individual group standard
deviations, and thus the
same pooled standard
deviation s = 4.831
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We call slz,ooled = 5% the pooled variances

1
(n; — 1)s7
i=1

2 — 2 !
Spooled — §~ = I

2(”:’ -1
i=1
Examining the formula we can see that the pooled variance is a weighted average of
the group sample variances, and thus the pooled standard deviation can be very
loosely interpreted as a weighted average of the group standard deviations.
The following example illustrates the computation of the pooled standard devi-
ation, s.

Weight Gain of Lambs Table 11.2.1 shows the group sample sizes and standard devia-
tions for the lamb weight-gain data. The pooled variance and standard deviation are
calculated as

3 — 1)4.359% + (5 — 1)4.950% + (4 — 1)4.967> )

s? = ( ) ( ) ( ) _ 210025 o505
12 -3

s = \V/23.336 = 4.831 =

Observe that the pooled standard deviation, 4.831 Ib, is a sensible representative
value for the three group standard deviations, 4.359, 4.950, and 4.967 1b. If we as-
sume that the population standard deviation of weight gains is the same for all three
diets, then we would estimate this common value to be 4.83 Ib. This estimate de-
pends only on the variability within the groups and not on their mean values. Figure
11.2.1(a) displays the data from Table 11.2.1 while Figure 11.2.1(b) displays a modi-
fied version of the data for which 7 has been added to each Diet 2 observation and 5
has been subtracted from each Diet 3 observation. We see that while the group
means are different for these two data sets, the pooled standard deviation—the in-
herent variability in each group—is the same.

L ]
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Diet 1 Diet 2 Diet 3 Diet 1 Diet 2 Diet 3

(a) (®)

ANOVA Notation

While our preceding formulas use familiar notation and terms, we will find it con-
venient to decompose the pooled variance into parts and subsequently define new
terms to be used in the context of analysis of variance.

*Recall from Chapter 2 that the variance is simply the standard deviation squared.
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Example
11.2.3

The numerator of the pooled variance is known as the sum of squares within
groups, SS(within), while the denominator is known as the degrees of freedom
within groups, df(within). The formulas for these are displayed in the following box.*

Sum of Squares and df within Groups
1

SS(within) = > (n; — 1)s?
i=1

df(within) = n. — [

Their ratio is defined as the mean square within groups, or MS(within). Note that
MS(within) is just another name for the pooled variance.

Mean Square within Groups
SS(within)

MS(within) =3 Githin)

Hence, the quantity MS(within) measures the variability within the groups.?
The following example illustrates the calculation of SS(within), df(within), and
MS(within).

Weight Gain of Lambs In Example 11.2.2 when computing the pooled variance, we

found
3 — 1)4.359% + (5 — 1)4.950> + (4 — 1)4.967> 210.02
EPRNCIaR) ( . )_ y @¢-1 - 090 S _ 23336

Thus, SS(within) = 210.025, df(within) = 9,and MS(within) = 23.336. -

Variation between Groups

For two groups, the difference between the groups is simply described by (y; — ;).
How can we describe between-group variability for more than two groups? One
naive idea is to simply compute the sample variance of the group means. The mean
square between groups, or MS(between) is motivated by this idea. In fact, were it
not for the »; in the numerator of the following expression (to adjust for the sample
sizes of the groups), the MS(between) would indeed be the sample variance of the
group means.

Mean Square between Groups

I —
23 = ¥)?
MS(between) = 1—1[#

Iy,
“A popular but less intuitive formula for SS(within) is given by SS(within) = >0 Vi — )2
==

TIf there were only one group, with  observations, then df(within) would be n — 1 and the SS(within) would be
(n — 1)s?

(n=1)

(n — 1)s%. MS(within) would then simply be = s2, the sample variance.
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As with the measures used for the within-group variation, MS(within), it is conven-
ient to define the numerator of MS(between) as the sum of squares between groups
or SS(between) and the denominator as the degrees of freedom between groups or
df(between) so that

SS(between)

MS(between) = df(between)

where SS(between) and df(between) are explicitly defined as follows.

Sum of Squares and df between Groups

I
SS(between) = > n;(y; — ¥)*
=

df(between) = [ — 1

The following example illustrates these definitions.

Weight Gain of Lambs For the data of Example 11.2.1, the quantities that enter
SS(between) are shown in Table 11.2.2.

Table 11.2.2 Calculation of SS(between) for lamb weight gains

Diet 1 Diet 2 Diet 3
Mean: y; 11 15 12

Grand meany = 13

From Table 11.2.2 we calculate
SS(between) = 3(11 — 13)> + 5(15 — 13)> + 4(12 — 13)> = 36
Since I = 3, we have
df(between) =3 — 1 =2
so that

36
MS(between) = 5 = 18 [

The SS(between) and MS(between) measure the variability between the sam-
ples means of the groups. This variability is shown graphically in Figure 11.2.2.

A Fundamental Relationship of ANOVA

The name analysis of variance derives from a fundamental relationship involving
SS(between) and SS(within). Consider an individual observation y;;. It is obviously
true that

Vi— Yy =0+ —Y)

This equation expresses the deviation of an observation from the grand mean as the
sum of two parts: a within-group deviation (y;; — ;) and a between-group deviation
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Figure 11.2.2 Measuring
the differences between
group means
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(y; — ¥).Itis also true (but not at all obvious) that the analogous relationship holds
for the corresponding sums of squares; that is,

1 n;
22— = EE (i = W)* + EZ — ) (11.2.1)

i=1j=1 i=1j=1 i=1j=1
which, by rewriting each of the sums on the right-hand side can be expressed as
1

1 1 1
22 yU - y El(nl - 1)s12 + ;ni(yz - ?)2

i=1j=1
= SS(within) + SS(between)

The quantity on the left-hand side of formula (11.2.1) is called the total sum of
squares, or SS(total):

Definition of Total Sum of Squares

1 n;
SS(total) = EE (yij — ?)2

i=1j=1

Note that SS(total) measures variability among all n observations in the / groups.
The relationship [formula (11.2.1)] can be written as

Relationship between Sums of Squares
!7 SS(total) = SS(between) + SS(within)

The preceding fundamental relationship shows how the total variation in the
data set can be analyzed, or broken down, into two interpretable components:
between-sample variation and within-sample variation. This partition is an analysis
of variance.
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The total degrees of freedom, or df(total), is defined as follows:

Total df
’7 df(total) = n. — 1

With this definition, the degrees of freedom add, just as the sums of squares do; that is,

df(total) = df(within) + df(between)
nn—1=m.—-I)+{-1)
Notice that, if we were to consider all n. observations as a single sample, then the

SS for that sample (that is, the numerator of the variance) would be SS(total) and
the associated df (that is, the denominator of the variance) would be df(total).

Consequently, V d%%} is the standard deviation of the entire data set when group

membership is ignored.
The following example illustrates the fundamental relationships between the
sums of squares and degrees of freedom.

Weight Gain of Lambs For the data of Table 11.2.1, we found y = 13; we calculate
SS(total) as

n;

1 i
SS(total) = 2 (vij —
i= 1

=
(8 — 13y + (16 — 13> + (9 — 13)?]

+[(9 = 13)% + (16 — 13)> + (21 — 13)> + (11 — 13)* + (18 — 13)?]
+[(15 = 13)> + (10 — 13)> + (17 — 13)> + (6 — 13)?]
= 246

For these data, we found that SS(between) = 36 and SS(within) = 210. We verity
that

246 = 36 + 210
Also, we found that df(within) = 9 and df(between) = 2. We verify that
df(total) =12 -1 =11 =9 + 2 =

The ANOVA Table

When working with the ANOVA quantities, it is customary to arrange them in a
table. The following example shows a typical format for the ANOVA table.

Weight Gain of Lambs Table 11.2.3 shows the ANOVA for the lamb weight-gain data.
Notice that the ANOVA table clearly shows the additivity of the sums of squares
and the degrees of freedom. [

Comment on terminology. While the terms “between-groups” and “within-groups”
are not technical terms, they are useful in describing and understanding the
ANOVA model. Computer software and other texts commonly refer to these
sources of variability as treatment (between groups) and error (within groups).
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Table 11.2.3 ANOVA table for lamb
weight gains

Source df SS MS

Between diets 2 36 18.00

Within diets 9 210 23.33

Total 11 246

Summary of Formulas

For convenient reference, we display in the box the definitional formulas for the

basic ANOVA quantities.

— ANOVA Quantities with Formulas

Source df SS (Sum of Squares) MS (Mean Square)
I
Between groups I-1 Sy —3)? SS/df
=
I
Within groups - > = Ds; SS/df
i=1
I n
Total .1 > (i — )
=1j=1

Exercises 11.2.1-11.2.7

11.2.1 The accompanying table shows fictitious data for
three samples.

SAMPLE

| 2 3

48 40 39

39 48 30

42 44 32

43 35
Mean 4300  44.00  34.00
SD 374 400  3.92

(a) Compute SS(between) and SS(within).

(b) Compute SS(total), and verify the relationship
between SS(between), SS(within), and SS(total).

(c) Compute MS(between), MS(within), and spooled-

11.2.2 Proceed as in Exercise 11.2.1 for the following
data:

SAMPLE
I 2 3
23 18 20

29 12 16
25 15 17

23 23

19
Mean 25.00 15.00 19.00
SD 2.83 3.00 3.16

11.2.3 For the following data, SS(within) = 116 and
SS(total) = 338.769.
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SAMPLE SOURCE DF SS MS
' 2 3 Between groups 4
31 30 39 Within groups 964
34 26 45 Total 53 1123
39 35 39
32 29 37 (a) Complete the table.
30 (b) How many groups were there in the study?
(c) How many total observations were there in the study?
(a) Find SS(between). 11.2.6 The following ANOVA table is only partially
(b) Compute MS(between), MS(within), and spgieq- completed.
11.2.4 The following ANOVA table is only partially
completed. SOURCE DF SS MS
Between groups 258
SOURCE DF S5 MS Within groups 26
Between groups 3 45 Total 29 898
Within groups 12 337
Total 472 (a) Complete the table.

(b) How many groups were there in the study?
(c) How many total observations were there in the

(a) Complete the table. study?

(b) How many groups were there in the study? ]
11.2.7 Invent examples of data with

(c) How many total observations were there in the o
(a) SS(between) = 0 and SS(within) > 0

study?
11.2.5 The following ANOVA table is only partially (b) SS(between) > 0 and SS(within) = 0
completed. (c) For each example, use three samples, each of size 5.

[ 1.3 The Analysis of Variance Model

In Section 11.2 we introduced the notation y;; for the jth observation in group i. We
think of y; as a random observation from group i, where the population mean of
group i is u;. We use analysis of variance to investigate the null hypothesis that
M1 = My = -+ = uy Itcan be helpful to think of ANOVA in terms of the following
model:

Yij =M1t g

In this model, u represents the grand population mean —the population mean when
all the groups are combined. If the null hypothesis is true, then u is the common pop-
ulation mean. If the null hypothesis is false, then at least some of the y;’s differ from
the grand population mean of .

The term 7; represents the effect of group i—that is, the difference between the
population mean for group i, i;, and the grand population mean, . (7 is the Greek
letter “tau.”) Thus,

Ti = M T M
The null hypothesis

Hypy =pp = - = py
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Example
11.3.1

is equivalent to
Hyri=m = =1,=0

If Hy is false, then at least some of the groups differ from the others. If 7; is positive,
then observations from group i tend to be greater than the overall average; if 7; is
negative, then data from group i tend to be less than the overall average.

The term ¢;; in the model represents random error associated with observation j
in group i. Thus, the model

Yij =M T T g
can be stated in words as
observation = overall average + group effect + random error

We estimate the overall average, i, with the grand mean of the data:

N

L=y

Likewise, we estimate the population average for group i with the sample average
for group i:

Ki = )i
Since the group effect is
Ti = i T MK

we estimate 7; as

A

=YY
Finally, we estimate the random error, g, for observation y;; as
&j = Yij — Vi
Putting these estimates together, we have
Vi =y + i =)+ iy — )
or
Vi =R Tt g

Note. Some authors use the terminology SS(error) for what we have called
SS(within). This is due to the fact that the within-groups component y;; — y; esti-
mates the random error term in the ANOVA model.

Weight Gain of Lambs For the data of Example 11.2.1, the estimate of the grand pop-
ulation mean is i = 13.The estimated group effects are

Tn=n-—y=1-13=-2
T,=15-13=2

and
T3=12-13 = -1

Thus, we estimate that Diet 2 increases weight gain by 2 1b on average (when com-
pared to the average of the three diets), Diet 1 decreases weight gain by an average
of 2 1b, and Diet 3 decreases weight gain by 1 Ib, on average. [



Figure 11.4.1 The F
distribution with
numerator df = 4 and
denominator df = 20
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When we conduct an analysis of variance, we are comparing the sizes of the
sample group effects, the 7;’s, to the sizes of the random errors in the data, the &;s.
We can see that

I
SS(between) = > n;7}
=1

and
I
SS(within) = E ?:,2,
i=1j=1

1.4 The Global F Test

The global null hypothesis is

Hypy =pp = =py

We consider testing H( against the nondirectional (or omnidirectional) alternative
hypothesis

H 4:'The u;’s are not all equal

Note that H; is compound (unless / = 2), and so rejection of H does not specify
which u;’s are different. If we reject Hy,, then we conduct a further analysis to make
detailed comparisons among the u;’s. Testing the global null hypothesis may be
likened to looking at a microscope slide through a low-power lens to see if there is
anything on it; if we find something, we switch to a greater magnification to examine
its fine structure.

The F Distributions

The F distributions, named after the statistician and geneticist R. A. Fisher, are
probability distributions that are used in many kinds of statistical analysis. The form
of an F distribution depends on two parameters: the numerator degrees of freedom
and the denominator degrees of freedom. Figure 11.4.1 shows an F distribution
with numerator df = 4 and denominator df = 20. Critical values for the F distri-
bution are given in Table 10 at the end of this book. Note that Table 10 occupies 10
pages, each page having a different value of the numerator df. As a specific exam-
ple, for numerator df = 4 and denominator df = 20, we find in Table 10 that
F(4,20)005 = 2.87; this value is shown in Figure 11.4.1.

o —
[\S)
~
=
~

Foos
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Example
11.4.1

The F Test

The F test is a classical test of the global null hypothesis. The test statistic, the F
statistic, is calculated as follows:

MS(between)
* MS(within)
From the definitions of the mean squares (Section 11.2), it is clear that Fy will be
large if the discrepancies among the group means (Y;’s) are large relative to the vari-
ability within the groups. Thus, large values of F; tend to provide evidence against
Hy—evidence for a difference among the group means.

To carry out the F test of the global null hypothesis, critical values are obtained
from an F distribution (Table 10) with

Numerator df = df(between)
and
Denominator df = df(within)
It can be shown that (when suitable conditions for validity are met) the null distri-

bution of Fjis an F distribution with df as given above.
The following example illustrates the global F test.

Weight Gain of Lambs For the lamb feeding experiment of Example 11.2.1, the global
null hypothesis and alternative can be stated verbally as

Hjy: Mean weight gain is the same on all three diets.

H ,: Mean weight gain is not the same on all three diets.

or symbolically as

Hy:py = po = ps
H 4:'The p;’s are not all equal

We saw in Figure 11.2.2 that the three sample means do not differ much when com-
pared to the variability within the groups, which is not very strong evidence against
Hy. Let us confirm this visual impression by carrying out the F test at & = 0.05.
From the ANOVA table (Table 11.2.3) we find

18.00
Fo= i3 =077

The degrees of freedom can also be read from the ANOVA table as

Numerator df = 2
Denominator df = 9

From Table 10 we find F(2,9)9,9 = 1.93, so that P > 0.20. Thus, there is a lack of
significant evidence against Hy; there is insufficient evidence to conclude that
there is any difference among the diets with respect to population mean weight
gain. The observed differences in the mean gains in the samples can readily be at-
tributed to chance variation. Because this study was an experiment (as opposed to
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an observational study), we can even make a slightly stronger summary of the re-
sults: There is insufficient evidence to conclude that among these three diets, diet
affects weight gain. [

Relationship between F Test and t Test

Suppose only two groups are to be compared (/ = 2). Then one could test
Hy: g = p, against H 4y # u, using either the F test or the ¢ test. The ¢ test from
Chapter 7 can be modified slightly by replacing each sample standard deviation by
Spooled 88 defined in Section 11.2, before calculating the standard error of Y, — Ys).
It can be shown that the F test and this “pooled” ¢ test are actually equivalent proce-
dures. The relationship between the test statistics is 12 = F,; that is, the value of the F
statistic for any set of data is necessarily equal to the square of the value of the
(pooled) ¢ statistic. The corresponding relationship between the critical values is
18005 = Foos» thoos = Fyo1, and so on. For example, suppose n; = 10 and n, = 7.
Then the appropriate ¢ distribution has df = ny + n, — 2 = 15,and t150p5s = 2.131,
whereas the F distribution has numerator df =/ — 1 =1 and denominator
df = n. — I = 15, s0 that F(1,15)y0s = 4.54; note that (2.131)> = 4.54. Because of
the equivalence of the tests, the application of the F test to compare the means of two
samples will always give exactly the same P-value as the pooled ¢ test applied to the
same data.

Exercises 11.4.1-11.4.7

11.4.1 Monoamine oxidase (MAQO) is an enzyme that is
thought to play a role in the regulation of behavior. To
see whether different categories of schizophrenic pa-
tients have different levels of MAO activity, researchers
collected blood specimens from 42 patients and meas-
ured the MAO activity in the platelets. The results are
summarized in the accompanying table. (Values are ex-
pressed as nmol benzylaldehyde product/10° platelets/
hour.)® Calculations based on the raw data yielded
SS(between) = 136.12 and SS(within) = 418.25.

MAO ACTIVITY
DIAGNOSIS MEAN SD NO. OF PATIENTS
Chronic undifferentiated 9.81 3.62 18
schizophrenic
Undifferentiated with 6.28 2.88 16
paranoid features
Paranoid schizophrenic 597 3.19 8

(a) Dotplots of these data follow. Based on this graphi-
cal display, does it appear that the null hypothesis is
true? Why or why not?

(b) Construct the ANOVA table and test the global null
hypothesis at @ = 0.05.

(c) Calculate the pooled standard deviation, Spooled-
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11.4.2 It is thought that stress may increase susceptibil-
ity to illness through suppression of the immune sys-
tem. In an experiment to investigate this theory, 48 rats
were randomly allocated to four treatment groups: no
stress, mild stress, moderate stress, and high stress. The
stress conditions involved various amounts of restraint
and electric shock. The concentration of lymphocytes
(cells/ml X 107°) in the peripheral blood was measured
for each rat with the results given in the accompanying
table.* Calculations based on the raw data yielded
SS(between) = 89.036 and SS(within) = 340.24.
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NO MILD MODERATE HIGH
STRESS STRESS STRESS STRESS
y 6.64 4.84 3.98 2.92
s 2.77 242 391 1.45
n 12 12 12 12

(a) Construct the ANOVA table and test the global null
hypothesis at « = 0.05.

(b) Calculate the pooled standard deviation, spaoled-

11.4.3 Human beta-endorphin (HBE) is a hormone se-
creted by the pituitary gland under conditions of stress.
An exercise physiologist measured the resting (un-
stressed) blood concentration of HBE in three groups of
men: 15 who had just entered a physical fitness program,
11 who had been jogging regularly for some time, and 10
sedentary people. The HBE levels (pg/ml) are shown in
the following table.” Calculations based on the raw data
yielded SS(between) = 240.69 and SS(within) = 6,887.6.

FITNESS PROGRAM

ENTRANTS JOGGERS SEDENTARY
Mean 38.7 35.7 42.5
SD 16.1 13.4 12.8
n 15 11 10

(a) State the appropriate null hypothesis in words, in the
context of this setting.

(b) State the null hypothesis in symbols.

(c) Construct the ANOVA table and test the null hy-
pothesis. Let « = 0.05.

(d) Calculate the pooled standard deviation, Spooled-

11.4.4 An experiment was conducted in which the antivi-
ral medication zanamivir was given to patients who had
the flu. The length of time until the alleviation of major
flu symptoms was measured for three groups: 85 patients
who were given inhaled zanamivir, 88 patients who were
given inhaled and intranasal zanamivir, and 89 patients
who were given a placebo. Summary statistics are given in
the following table.® The ANOVA SS(between) is 53.67
and the SS(within) is 2034.52.

INHALED AND
INHALED INTRANASAL
ZANAMIVIR ZANAMIVIR PLACEBO
Mean 5.4 5.3 6.3
SD 2.7 2.8 2.9
n 85 88 89

(a) State the appropriate null hypothesis in words, in the
context of this setting.

(b) State the null hypothesis in symbols.

(c) Construct the ANOVA table and test the null hy-
pothesis. Let & = 0.05.

(d) Calculate the pooled standard deviation, spooled-

11.4.5 A researcher collected daffodils from four sides of
a building and from an open area nearby. She wondered
whether the average stem length of a daffodil depends on
the side of the building on which it is growing. Summary
statistics are given in the following table.” The ANOVA
SS(between) is 871.408 and the SS(within) is 3588.54.

NORTH EAST  SOUTH  WEST  OPEN
Mean 414 43.8 46.5 432 355
SD 9.3 6.1 6.6 10.4 4.7
n 13 13 13 13 13

(a) Dotplots of these data follow. Based on the dotplots,
does it appear that the null hypothesis is true? Why
or why not?

(b) State the null hypothesis in symbols.

(c) Construct the ANOVA table and test the null hy-
pothesis. Let « = 0.10.
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11.4.6 A researcher studied the flexibility of 10 women
in an aerobic exercise class, 10 women in a modern dance
class, and a control group of 9 women. One measurement
she made on each woman was spinal extension, which is a
measure of how far the woman could bend her back.
Measurements were made before and after a 16-week
training period. The change in spinal extension was
recorded for each woman. Summary statistics are given in
the following table.® The ANOVA SS(between) is 7.04
and the SS(within) is 15.08.

AEROBICS MODERN DANCE CONTROL
Mean —-0.18 0.98 0.13
SD 0.80 0.86 0.57
n 10 10 9




(a) Dotplots of these data were are shown below. Based
on the dotplots, does it appear that the null hypothe-
sis is true? Why or why not?

(b) State the null hypothesis in symbols.
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11.4.7 The following computer output is for an analysis
of variance in which yields (bu/acre) of different varieties
of oats were compared.

SUMS OF MEAN
(c) COIIS‘[I‘.llCt the ANOVA table and test the null hy- SOURCE DF SQUARES SQUARE FRATIO PROB
pothesis. Let a = 0.01. Group 2 76.8950 384475 0.40245 0.6801
o Error 9 859.808  95.5342
5 . Total 11 936.703
6)
§ (a) How many varieties (groups) were in the experi-
5 ment?
g 1 * : : (b) State the conclusion of the ANOVA.
g . oo (c) What is the pooled standard deviation, spogleq?
E 0 — ° °
b1 . -
£ *
[,Q).‘ L] L]
-1 —
I I I
Aerobics  Modern Control

1.5 Applicability of Methods

Like all other methods of statistical inference, the calculations and interpretations
of ANOVA are based on certain conditions.

Standard Conditions

The ANOVA techniques described in this chapter, including the global F test, are
valid if the following conditions hold.

1. Design conditions

(a) It must be reasonable to regard the groups of observations as random
samples from their respective populations.

(b) The I samples must be independent of each other.

2. Population conditions The I population distributions must be (approximate-
ly) normal with equal standard deviations:

g1 =0,= " =0y

These conditions are extensions of the conditions given in Chapter 7 for the inde-
pendent-samples ¢ test with the added condition that the standard deviations be
equal. The condition of normal populations with equal standard deviations is less
crucial if the sample sizes (n;) are large and approximately equal.

Verification of Conditions

The design conditions may be verified as for the independent-samples ¢ test. To
check condition 1(a), one looks for biases or hierarchical structure in the collection
of the data. A completely randomized design assures independence of the samples
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Example
11.5.1

Figure 11.5.1 Normal
probability plot of residuals
(yj — i) in weight-gain
data

Example
11.5.2

[condition 1(b)]. If units have been allocated to treatment groups in a nonrandom
manner (e.g., by a randomized blocks design to be discussed in Section 11.6),
or if observations on the same experimental unit appear in different samples
(e.g., for I = 2, paired data as seen in Chapter 9), then the samples are not
independent.

As with the independent-samples ¢ test, the population conditions can be roughly
checked from the data. To check normality, a separate histogram or normal proba-
bility plot can be made for each sample. Another option is to make a single his-
togram or normal probability plot of the deviations (y; — ;) from all the samples
combined. In the context of analysis of variance we call these deviations from the
group means residuals. Thus, a residual measures how far a data value falls from its
respective group mean.

Equality of the population SDs is checked by comparing the sample SDs; one
useful trick is to plot the SDs against the means (¥;’s) to check for a trend. Another
approach is to make a plot of the residuals (y;; — ;) against the means ();’s). As a
rule of thumb, we would like the largest sample SD divided by the smallest sample
SD to be less than 2 or so. If this ratio is much larger than 2, then we cannot be con-
fident in the P-value from the ANOVA, particularly if the sample sizes are small
and unequal. In particular, if the sample sizes are unequal and the sample SD from
a small sample is quite a bit larger than the other SDs, then the P-value can be
quite inaccurate.

Weight Gain of Lambs Consider the lamb feeding experiment of Example 11.2.2.
Figure 11.2.1 (in Section 11.2) shows that the variability within groups is nearly
equal across the three diets: The three sample SDs are 4.36, 4.95, and 4.97. Figure
11.5.1is a normal probability plot of the 12 residuals (y; — ¥;) (3 from Diet 1,5 from
Diet 2, and 4 from Diet 3). This plot is close to linear, which provides no evidence to

cast doubt on the normality condition. [
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Sweet Corn Consider the sweet corn data of Example 11.1.1. Figure 11.5.2(a) shows
the data with each group receiving its own plotting symbol. Using those same plot-
ting symbols for each group, Figure 11.5.2(b) displays the residuals (y;; — ;) plotted



Figure 11.5.2 Plot of
residuals versus sample
mean for the sweet corn
data

Figure 11.5.3 Plot of
residuals versus sample
means for a fictitious data
set for which the standard
deviation increases with
the mean
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against each group’s mean (y;) (also known as a fitted value in the context of
analysis of variance). This second graph shows that the variability (as measured vi-
sually by the vertical spread) does not appreciably change as the mean changes
(which is good —if the variability increased as the mean increased, then condition 2
would be violated). ]

While one could look at a basic plot of the data, as in Figure 11.5.2(a), to visually in-
spect that the SDs are similar across all groups, plotting the data as in Figure 11.5.2(b)
provides some visual advantages. First, by examining the residuals (Figure 11.5.2(b))
and not the raw data (Figure 11.5.2(a)), one can scan the graph from left to right al-
lowing the eyes to more clearly compare the variability among the groups without
being distracted by the changing means. Furthermore, a common violation of the
equal SD requirement is that the group SDs grow with the means. To illustrate this
violation, consider the fictitious data graphed in Figure 11.5.3(a) consisting of five
treatment groups and seven observations per group. Clearly the variability is not the
same in all five groups. The plot of the residuals versus means in Figure 11.5.3(b) ex-
poses this problem more clearly and shows that the SD (represented by vertical
spread) increases with the mean. We often describe this as funnel or horn shape in
the residuals.
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Example
11.5.3

Figure 11.5.4 Histogram
and normal probability plot
of deviations (y;; — y,) in
sweet corn data

Chapter 11 Comparing the Means of Many Independent Samples

Sweet Corn Again considering the sweet corn data of Example 11.2.1, we examine
the normality of the groups through examination of the residuals. Figure 11.5.4 con-
tains a histogram and a normal probability plot of the 60 residuals (y;; — ¥;). The
bell-shaped nature of plot (a) and linearity of plot (b) cast little doubt upon the nor-

mality condition. [
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Further Analysis

In addition to their relevance to the F test, the standard conditions underlie many

classical methods for further analysis of the data.
If the I populations have the same SD, then a pooled estimate of that SD from

the data is
Spooled =V MS(within)

from the ANOVA. This pooled standard deviation spooeq 18 @ better estimate than
any individual sample SD because spqoleq 1S based on more observations.

A simple way to see the advantage of spoo1eq i to consider the standard error of
an individual sample mean, which can be calculated as

Spooled

Vn

where n is the size of the individual sample. The df associated with this standard
error is df(within), which is the sum of the degrees of freedom of all the samples.
By contrast, if the individual SD were used in calculating SEy, it would have only
(n — 1) df. When the SE is used for inference, larger df yield smaller critical values
(see Table 4), which in turn lead to improved power and narrower confidence
intervals.

In optional Sections 11.7 and 11.8 we will consider methods for detailed
analysis of the group means Y,Y,, ...,Y;. Like the F test, these methods were
designed for independent samples from normal populations with equal standard
deviations. The methods use standard errors based on the pooled standard deviation
estimate spooled-

SEy =




Exercises 11.5.1-11.5.2
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11.5.1 Refer to the lymphocyte data of Exercise 11.4.2.

The global F test is based on certain conditions concern-

ing the population distributions.

(a) State the conditions.

(b) Which features of the data suggest that the condi-
tions may be doubtful in this case?

11.5.2 Patients with advanced cancers of the stomach,
bronchus, colon, ovary, or breast were treated with ascor-

bate. The purpose of the study was to determine if the
survival times differ with respect to the organ affected by
the cancer. The variable of interest is survival time (in
days).!? Here are parallel dotplots of the raw data.

An ANOVA was done after a square root transformation
was applied to the raw data. There were two (related)
reasons that the data were transformed. What were those
two reasons?

Example
11.6.1
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[1.6

The completely randomized design makes no distinctions among the experimental
units. Often an experiment can be improved by a more refined approach, one that
takes advantage of known patterns of variability in the experimental units.

In a randomized blocks design, we first group the experimental units into sets,
or blocks, of relatively similar units and then we randomly allocate treatments with-
in each block. Here is an example.

One-Way Randomized Blocks Design

Alfalfa and Acid Rain Researchers were interested in the effect that acid has on the
growth rate of alfalfa plants. They created three treatment groups in an experi-
ment: low acid, high acid, and control. The response variable in their experiment
was the height of the alfalfa plants in a Styrofoam cup after five days of growth.*
They had 5 cups for each of the 3 treatments, for a total of 15 observations. However,
the cups were arranged near a window and they wanted to account for the effect of
differing amounts of sunlight. Thus, they created 5 blocks—each block was a fixed

*More precisely, the response variable was the average height of plants within a cup, so that the observational
unit was a cup, rather than individual plants.
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Figure 11.6.1 Design of
the alfalfa experiment

Example
11.6.2

Block 1 Block 2 Block 3 Block 4 Block 5

% high control control control high
2| control low high low low
= low high low high control

Organization of blocks for alfalfa experiment

distance away from the window (block 1 being the closest through block 5, the
farthest). Within each block the three treatments were randomly assigned, as shown
in Figure 11.6.1.1 [

Example 11.6.1 is an illustration of a randomized blocks design. To carry out a ran-
domized blocks design, the experimenter creates or identifies suitable blocks of ex-
perimental units and then randomly assigns treatments within each block in such a
way that each treatment appears in each block.* In Example 11.6.1, the rows of cups
at each of the five distances from the window serve as blocks. In general, we create
blocks in order to reduce or eliminate variability caused by extraneous variables, so
that the precision of the experiment is increased. We want the experimental units
within a block to be homogenous; we want the extraneous variability to occur
between the blocks. Here are more examples of randomized blocks designs in bio-
logical experiments.

Blocking by Litter How does experience affect the anatomy of the brain? In a typical
experiment to study this question, young rats are placed in one of three environ-
ments for 80 days:

Ty: Standard environment. The rat is housed with a single companion in a standard
lab cage.

T»: Enriched environment. The rat is housed with several companions in a large
cage, furnished with various playthings.

T5: Impoverished environment. The rat lives alone in a standard lab cage.

At the end of the 80-day experience, various anatomical measurements are made on
the rats’ brains.

Suppose a researcher plans to conduct the above experiment using 30 rats. To
minimize variation in response, all 30 animals will be male, of the same age and
strain. To reduce variation even further, the researcher can take advantage of the
similarity of animals from the same litter. In this approach, the researcher would ob-
tain three male rats from each of 10 litters. The three littermates from each litter
would be assigned at random: one to 7', one to T3, and one to T3.12 [

Another way to visualize the experimental design is in tabular form, as shown
in Table 11.6.1. Each “Y” in the table represents an observation on one rat. Using
the layout of Table 11.6.1, the experimenter can compare the responses of rats that
received different treatments but are in the same litter. Such comparisons are not
affected by any difference (genetic and other) that may exist between one litter
and another.

*Strictly speaking, the design we discuss is termed a randomized complete blocks design because every treat-
ment appears in every block. In an incomplete blocks design, each block contains some, but not necessarily all, of
the treatments.



Example
11.6.3

Example
11.6.4

Figure 11.6.2 Layout of
an agricultural randomized
blocks design
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Table 11.6.1 Format for rat brain data
Treatment
T 165 T3
Litter 1 Y Y Y
Litter 2 Y Y Y
Litter 3 Y Y Y
Litter 10 Y Y Y

Within-Subject Blocking (Pairing) A dermatologist is planning a study to compare two
medicated lotions for their effectiveness in treating acne. Twenty patients are to par-
ticipate in the study. Each patient will use lotion A on one side of his or her face and
lotion B on the other; the dermatologist will observe the improvement on each side
during a three-month period. For each patient, the side of the face to receive lotion
A is randomly selected; the other side receives lotion B. The bottles of medication
have coded labels so that neither the patient nor the physician knows which bottle
contains A and which contains B—that is, in addition to blocking, the experiment
also makes use of blinding.'® This example, with blocks of size 2, is an example of
pairing: The left side of the face is paired with the right side of the face. We have con-
sidered the analysis of paired data in Chapter 8. [

Blocking in an Agricultural Field Study When comparing several varieties of grain, an
agronomist will generally plant many field plots of each variety and measure the
yield of each plot. Differences in yields may reflect not only genuine differences
among the varieties, but also differences among the plots in soil fertility, pH, water-
holding capacity, and so on. Consequently, the spatial arrangement of the plots in
the field is important. An efficient way to use the available field area is to divide
the field into large regions—the blocks—and to subdivide each block into several
plots. Within each block the various varieties of grain are then randomly allocated
to the plots, with a separate randomization done for each block. For instance, sup-
pose we want to test four varieties of barley. Then each block would contain four
plots. The resulting randomized allocation might look like Figure 11.6.2, which is a
schematic map of the field. The “treatments” Ty, T,, T3, and T4 are the four vari-

eties of barley. [
N
T T T T
w E 3 3 1 4
T, T T, T,
g T, T, T, T3
Tl T2 T3 Tl

Block 1 Block 2 Block 3 Block 4
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Example
11.6.5

Creating the Blocks

As the preceding examples show, blocking is a way of organizing the inherent varia-
tion that exists among experimental units. Ideally, the blocking should be arranged
so as to increase the information available from the experiment. To achieve this
goal, the experimenter should try to create blocks that are as homogeneous within
themselves as possible, so that the inherent variation between experimental units be-
comes, as far as possible, variation between blocks rather than within blocks. This
principle was illustrated in the preceding examples (e.g., in Example 11.6.2, where
blocking by litter exploits the fact that littermates are more similar to each other
than to nonlittermates). The following is another illustration.

Agricultural Field Study For the barley experiment of Example 11.6.4, how would
agronomists determine the best arrangement or layout of blocks in a field? They
would design the blocks to take advantage of any prior knowledge they may have of
fertility patterns in the field. For instance, if they know that an east-west fertility
gradient exists in the field (perhaps the field slopes from east to west, with the result
that the west end has a thicker layer of good soil or receives better irrigation), then
they might choose blocks as in Figure 11.6.2; the layout maximizes soil differences
between the blocks and minimizes differences between plots within each block.
(But even if a field appears to be uniform, blocking is usually used in agronomic ex-
periments, because plots closer together in the field are generally more similar than
plots farther apart.) [

To add solidity to this example, let us look at a set of data from a randomized
blocks experiment on barley. Each entry in Table 11.6.2 shows the yield (bushels of
barley per acre) of a plot 3.5 ft wide by 80 ft long.'*

Table 11.6.2 Yield (Ib) of barley
Block 1 Block 2 Block 3 Block 4 Variety mean

Variety 1 93.5 66.6 50.5 42.4 63.3
Variety 2 102.9 53.2 47.4 43.8 61.8
Variety 3 67.0 54.7 50.0 40.1 53.0
Variety 4 86.3 61.3 50.7 46.4 61.2
Block Mean 87.4 59.0 49.7 43.2

It appears from Table 11.6.2 that the yield potential of the blocks varies greatly; the
data indicate a definite fertility gradient from block 1 to block 4. Because of the
blocked design, comparison of the varieties is relatively unaffected by the fertility
gradient. Of course, there also appears to be substantial variation within blocks.
[You might find it an interesting exercise to peruse the data and ask yourself
whether the observed differences between varieties are large enough to conclude
that, for example, variety 1 is superior (in mean yield) to variety 3; use your intuition
rather than a formal statistical analysis. The truth is revealed in Note 14.]

The Randomization Procedure

Once the blocks have been created, the blocked allocation of experimental units is
straightforward: It is as if a mini-experiment is conducted within each block. Random-
ization is carried out for each block separately, as illustrated in the following example.
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Agricultural Field Study Consider the agricultural field experiment of Example 11.6.4.
In block 1, let us label the plots 1,2, 3, 4, from north to south (see Figure 11.6.2); we
will allocate one plot to each variety. The allocation proceeds as for the completely
randomized design, by choosing plots at random from the four, and assigning the
first plot chosen to 77, the second to 75, and so on. For instance, using a computer to
randomly permute the numbers 1 through 4 (or even shuffled cards numbered 1
through 4) we might obtain the sequence 4, 3, 1,2 which would lead to the following
treatment allocation.

Block 1

T,: Plot4
T,: Plot3
T5: Plot1
T4 Plot2

This is in fact the assignment shown in Figure 11.6.2 for block 1. We can then repeat
this procedure for blocks 2, 3, and so on. [

Analyzing Data from a Randomized Block Experiment

In the same way we cannot use a two-sample ¢ test when data are paired, when an
experiment has been blocked, we no longer can use our ANOVA methods of
Section 11.4. Instead, we will use a randomized blocks ANOVA model. We will illus-
trate the concepts as we reconsider the alfalfa and acid rain experiment of Example
11.6.1 in which the researchers blocked the experiment based on rows of cups
placed parallel to a window so that each block has roughly the same light exposure.
The data are given in Table 11.6.3 and are graphed in Figure 11.6.3.

Table 11.6.3 Alfalfa plant height after five days (cm)

High acid Low acid Control Block mean
Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967
Treatment mean = y; 0.910 1.130 1.768
n 5 5 5

Our usual ANOVA null hypothesis for comparing / populations or treatments is

Hypy = pp =+ =y

Alfalfa and Acid Rain The null hypothesis for the alfalfa growth experiment is that
acid has no effect on five-day growth. (We can make a strong causal claim like this
because this was an experiment.) More directly, the null hypothesis is that the
mean five-day growth is the same for all three treatments (high acid, low acid, and
control).

Hypy = pp = p3 -



442 Chapter 11 Comparing the Means of Many Independent Samples

Figure 11.6.3 Dotplots of
the alfalfa growth data with
a summary of block and
treatment means
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This hypothesis can be tested with an analysis of variance F test, but first we want to
remove the variability in the data that is due to differences between the blocks. To
do this, we extend the ANOVA model presented in Section 11.3 to the following
model:

Vijk = Bt T T Bt g

In this model yjj is the kth observation when treatment i is applied in block j. (In
Example 11.6.1 there is only one observation for each treatment in each block, but
in general there might be more than one.) Here, as before, u represents the grand
population mean and the term 7; represents the effect of group i (that is, treatment 7).
The new term in the model is B;, which represents the effect of the jth block.

Visualizing the Block Effects

To visualize how blocking affects our ANOVA, we can think of our model in a
slightly different way:

Qije = ™) = m + Bj + &y

The left-hand side of the equation describes the data after treatment effects have
been removed. With our data we estimate this left-hand side as

Yijk = Ti = Yijk = Yie

That is, within each treatment group, the treatment mean is subtracted from each
data value.* We’ve seen this before —in the context of a one-way ANOVA (Section
11.2) we called these deviations or residuals. Figure 11.6.4 is a plot of the deviations
from the treatment means for the alfalfa data broken down by block. We can see
that there is still a lot of structure in the data: The mean deviations in blocks 1 and 2
are greater than zero while blocks 3, 4, and 5 are below zero (corresponding to
above average growth near the window and below average growth farther from the

*Here we write ;. rather than y; to distinguish the treatment means from the block means y.;.



Figure 11.6.4 Deviations
from the treatment means
for the alfalfa growth data
by blocks

Figure 11.6.5 Visualizing
the effect of blocking when
comparing mean growth
under the three acid
treatments in the alfalfa
experiment. Plot (a)
displays the raw growth
data while (b) displays the
growth data after adjusting
for the estimated block
effects. Treatment means
are indicated by horizontal
lines and within-group
standard deviations by
arrows
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window). The fact that these mean deviations are not all zero is a consequence of
the variability due to the blocks. Soon we shall describe how to measure the vari-
ability of these mean deviations for the blocks through the mean squares for blocks,
or MS(blocks).

To visualize how accounting for this block-to-block variation improves our abil-
ity to detect treatment effects, consider the alfalfa and acid rain data graphed in
Figure 11.6.5. Figure 11.6.5(a) displays the growth data for each treatment group
and simply ignores the blocks entirely while Figure 11.6.5(b) displays the growth
data after adjusting for the estimated block effects.* While the variability among the
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*To account for the blocking, the adjusted growth data on the y-axis for each treatment group is computed as
Yijk = Yeje
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treatment means is unchanged between the plots, we observe that the variability
within the treatment groups is much smaller after accounting for the blocks and thus
the differences among the treatments are more pronounced.

The One-Way Randomized Complete Block F Test

Recall that the ANOVA F test is a ratio that compares the variability among the
treatment means to the within-group variability. As seen in Figure 11.6.5, accounting
for the blocks has reduced the within-group variability and will thus increase the F
statistic value. We now briefly discuss the computations involved in computing the
ANOVA table for the randomized complete block F test.

In Section 11.2 for a one-way ANOVA, we discussed how the total sum of
squares, SS(total), is broken down into SS(between), which measures variability at-
tributed to differences among the treatment means, and SS(within), which measures
unexplained random variation in the data. For a randomized blocks experiment, we
write SS(treatments) rather than SS(between) to describe the variability between
treatment means to be clear that we’re measuring variability between treatments
and not blocks. For a randomized blocks experiment we also split the one-way
ANOVA SS(within) into two parts: SS(blocks), which measures variability among
the block means, and SS(within), which measures the remaining unexplained varia-
tion in the data. Thus, we have

One-way ANOVA: SS(total) = SS(within) + SS(between)

[N N

One-way ANOVA with blocks: SS(total) = SS(within) + SS(blocks) + SS(treatments)

Usually we are not interested in testing a hypothesis about the blocks, but
nonetheless we want to take into consideration the effect that blocking has on the
response variable. Refining the one-way ANOVA by calculating SS(blocks) ac-
complishes this goal and furthermore, if blocks are chosen wisely, can lead to more
powerful tests.

Computing the sums of squares is typically left to a computer and rarely per-
formed by hand. Nonetheless, the formulas are worth noting as they mathematically
reveal how the blocks are being accounted for.

The mean squares between blocks is calculated in a manner similar to our com-
putation of MS(between) from the one-way ANOVA of Section 11.2. Roughly
speaking, we compute a sort of weighted variance of the block means in which we
weight the differences between a block mean and the overall mean by the block
sample size. If we define the average of the observations in block j to be y.; and we
let m; denote the number of observations in block j, then the mean squares due to
blocks is defined as follows:

Mean Squares between Blocks
J —
> mi(y.; = y)

=1
MS(blocks) = 2 =
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Analogous to our formulas in Section 11.2 we define SS(blocks) and df(blocks) as
the numerator and denominator of MS(blocks) as follows:

Sum of Squares and df between Blocks

J
SS(blocks) = > m;(y.; — ¥)?
j=1

df(blocks) = J — 1

As noted previously, the blocking reduces MS(within). To compute MS(within) for
the randomized complete block experiment we compute

SS(within) = SS(total) — SS(treatment) — SS(blocks)

where SS(treatment) and SS(total) are computed as in Section 11.2. As sums of
squares are always nonnegative values, the preceding formula shows directly how
the blocks reduce the within-group variability.

Similarly, to compute df(within) for the randomized complete block experiment,
we have

df(within) = df(total) — df(treatment) — df(blocks)
=n-1H-UI-1H)-UJ-1)
=n.—1—-J+1

Example Alfalfa and Acid Rain For the alfalfa growth data in Table 11.6.2, the total of all the

11.6.8 observations is 1.30 + 1.15 + --- + 0.80 = 19.04 and the grand mean is
_  19.04
y=—— =126
YT s ’

We calculate
SS(treatments) = 5(0.910 — 1.269)*> + 5(1.130 — 1.269)? + 5(1.768 — 1.269)> = 1.986
Since I = 3, we have
df(treatments) =3 — 1 =2
so that

MS(treatments) = % = 0.993

We calculate
SS(blocks) = 3(1.917 — 1.269)* + 3(1.550 — 1.269)>
+ 3(1.077 — 1.269)* + 3(1.837 — 1.269)?
+ 3(1.967 — 1.269)*
= 2441

Since J = 5, we have
df(blocks) =5 -1 =4
and

2.441
MS(blocks) = == = 0610
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Example
11.6.9

The total sum of squares is found as (1.30 — 1.269)* + --- + (0.80 — 1.269)? = 5.879.
By subtraction, we compute SS(within):

SS(within) = SS(total) — SS(treatments) — SS(blocks)
= 5.879 — 1.986 — 2.441 = 1.452

Similarly, we compute df(within) as
df(within) = df(total) + df(treatments) + df(blocks)

which in this case givesus 14 — 2 — 4 = 8.

1.452
Thus, MS(within) = 3 - 0.182. ]

The sums of squares, degrees of freedom, and resulting mean squares are collected
in an expanded ANOVA table, which includes a line for the effect of the blocks.
To test the null hypothesis, we calculate

MS(treatments)

F =
$ MS(within)

and reject H if the P-value is too small.

Alfalfa and Acid Rain For the alfalfa growth data of Example 11.6.1, the ANOVA sum-
mary is given in Table 11.6.4. The F'statistic is 0.993/0.182 = 5.47,with degrees of free-
dom 2 for the numerator and 8 for the denominator. From Table 10 we bracket the
P-value as 0.02 < P-value < 0.05. (Using a computer gives P-value = 0.0318.) The
P-value is small, indicating that the differences between the three sample means are
greater than would be expected by chance alone. There is significant evidence that
acid affects the growth of alfalfa plants. (It is worth noting that if we ignore the blocks
and conduct an erroneous one-way ANOVA, we would find P-value = 0.0842, which
would not provide significant evidence for an acid effect at « = 0.05). [

Table 11.6.4 ANOVA table for alfalfa experiment
Source df SS MS
1.986 0.993 5.47
2441 0.610

1.452 0.182

4278

F ratio

Between treatments 2
Between blocks 4
Within groups 8
Total 14

Exercises 11.6.1-11.6.10

(Note: In several of these exercises you are asked to pre-
pare a randomized allocation. For this purpose you can
use either Table 1, random digits from your calculator, or
a computer.)

11.6.1 In an experiment to compare six different fertiliz-
ers for tomatoes, 36 individually potted seedlings are to

be used, 6 to receive each fertilizer. The tomato plants
will be grown in a greenhouse, and the total yield of
tomatoes will be observed for each plant. The experi-
menter has decided to use a randomized blocks design:
The pots are to be arranged in six blocks of 6 plants each
on the greenhouse bench. Two possible arrangements of
the blocks are shown in the accompanying figure.



Arrangement I:
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Arrangement II:

One factor that affects tomato yield is temperature,
which cannot be held exactly constant throughout the
greenhouse. In fact, a temperature gradient across the
bench is likely. Heat for the greenhouse is provided by a
steam pipe that runs lengthwise under one edge of the
bench, and so the side of the bench near the steam pipe is
likely to be warmer.

(a) Which arrangement of blocks (I or II) is better?
Why?

(b) Prepare a randomized allocation of treatments to the
pots within each block. (Refer to Example 11.6.4 as a
guide; assume that the assignments of seedlings to
pots and of pots to positions within the block have
already been made.)

11.6.2 An experiment on vitamin supplements is to be
conducted on young piglets, using litters as blocks in a
randomized blocks design. There will be five treatments:
four types of supplement and a control. Thus, five piglets
from each litter will be used. The experiment will include
five litters. Prepare a randomized blocks allocation of
piglets to treatments. (Refer to Example 11.6.4 as a
guide.)

11.6.3 Refer to the vitamin experiment of Exercise
11.6.2. Suppose a colleague of the experimenter proposes
an alternative design: All pigs in a given litter are to re-
ceive the same treatment, with the five litters being ran-
domly allocated to the five treatments. He points out that

his proposal would save labor and greatly simplify the
record keeping. If you were the experimenter, how would
you reply to this proposal?

11.6.4 In a pharmacological experiment on eating be-
havior in rats, 18 rats are to be randomly allocated to
three treatment groups: 71, T,, and 75. While under ob-
servation, the animals will be kept in individual cages in
a rack. The rack has three tiers with six cages per tier. In
spite of efforts to keep the lighting uniform, the lighting
conditions vary somewhat from one tier to another (the
bottom tier is darkest), and the experimenter is con-
cerned about this because lighting is thought to influ-
ence eating behavior in rats. The following three plans
are proposed for allocating the rats to positions in the
rack (to be done after the allocation of rats to treatment

groups):
Plan I. Randomly allocate the 18 rats to the 18 posi-
tions in the rack.
Plan II. Put all 7] rats on the first tier, all 75 rats on
the second, and all T; rats on the third tier.

Plan III. On each tier, put two 77 rats, two 7, rats,
and two Tx rats.

Put these three plans in order, from best to worst. Explain
your reasoning.

11.6.5 An experimenter is planning an agricultural field
experiment to compare the yields of 25 varieties of corn.
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She will use a randomized blocks design with six blocks;
thus, there will be 150 plots, and the yield of each plot
must be measured. The experimenter realizes that the
time required to harvest and weigh all the plots is so long
that rain might interrupt the operation. If rain should in-
tervene, there could be a yield difference between the
harvests before and after the rain. The experimenter is
considering the following plans.

Plan I. Harvest all plots of variety 1 first, all of variety
2 next, and so on.

Plan II. Harvest all plots of block 1 first, all of block 2
next, and so on.

Which plan is better? Why?

11.6.6 For an experiment to compare two methods of ar-
tificial insemination in cattle, the following cows are
available:

Heifers (14-15 months old): 8 animals
Young cows (2-3 years old): 8 animals
Mature cows (4-8 years old): 10 animals

The animals are to be randomly allocated to the two
treatment groups, using the three age groups as blocks.
Prepare a suitable allocation, randomly dividing each
stratum into two equal groups.

11.6.7 True or false (and say why): The primary reason
for using a randomized blocks design in an experiment is
to reduce bias.

11.6.8 In an experiment to understand the impact of
fish grazing on invertebrate populations in streams, re-
searchers established nine observation channels in
three streams (three channels per stream). Each of the
three channels within a stream received one of three
treatments: No fish were added, Galaxias fish were
added, or Trout fish were added. (The channels were
constructed with mesh to prevent fish from entering or
leaving.) Twelve days after establishing the channels,
the number of Deleatidium mayfly nymphs present in a
specified region in the center of the channel were
counted. The number of nymphs for each treatment in

each creek follows.!
CREEK
A B C
Treatment No Fish 11 8 7
Galaxias 9 4 4
Trout 6 4 0

(a) Identify the blocking, treatment (i.e., the explanatory
variable of interest), and response variables in this
study.

(b) In the context of this problem, explain to someone
who has never taken a statistics course how blocking
may help better identify treatment differences
should they exist.

11.6.9 (Continuation of 11.6.8)

(a) The accompanying table is an (improper) ANOVA
table for the data in Exercise 11.6.8. This analysis
does not account for the blocking that was per-
formed in the experiment. Based on this analysis,
is there evidence that fish affect the number of
mayfly nymphs present in the channels? Use
a=

DF SUMSQ MEANSQ FVALUE

Between groups 2 42.889  21.444 2.924
Within groups 6 44.000 7.333
Total 8 86.889

(b) The proper ANOVA table for the data, which ac-
counts for blocking, follows. Based on this proper
analysis, is there evidence that fish affect the num-
ber of mayfly nymphs present in the channels? Use
a = 0.05.

DF SUMSQ MEANSQ FVALUE

Between groups 2 42.889  21.444 16.783
Between blocks 2 38.889  19.444 15.217
Within groups 4 5.111 1.278

Total 8  86.889

(c) Compute and compare spooled Using the ANOVA
table from parts (a) and (b). Why is one estimate
larger than the other? What is sp01eq measuring in
part (a)? In part (b)?

11.6.10 Consider the experiment described in Exercise
11.6.8. In addition to measuring the number of mayfly
nymphs at the end of 12 days, stones of the same size were
removed from each channel and the algal ash free dry mass
(mg/cm?) was measured for each of nine stones. These
data produced SS(blocks) = 0.889, SS(within) = 0.444,
and SS(total) = 2.889.

(a) Construct an ANOVA table similar to Table 11.6.4 to

summarize these data.

(b) Is there evidence that the presence or type of fish is
associated with the mean algal ash free dry mass in
the channels? Use o = 0.05.

(c) Can a causal conclusion be drawn from the analysis
performed in part (b) based on these data? If so,
what causal conclusion can be made? If not, explain
why no causal conclusion is appropriate.



Example
11.7.1

Section 11.7 Two-Way ANOVA 449

1.7 Two-Way ANOVA
Factorial ANOVA

In a typical analysis of variance application there is a single explanatory variable or
factor under study. For example, in the weight gain setting of Example 11.2.1, the
factor is “type of diet,” which takes on three levels: diet 1, diet 2, and diet 3. Howev-
er, some analysis of variance settings involves the simultaneous study of two or
more factors. The following is an example.

Growth of Soybeans A plant physiologist investigated the effect of mechanical stress
on the growth of soybean plants. Individually potted seedlings were randomly allo-
cated to four treatment groups of 13 seedlings each. Seedlings in two groups were
stressed by shaking for 20 minutes twice daily, while two control groups were not
stressed. Thus, the first factor in the experiment was presence or absence of stress,
with two levels: control or stress. Also, plants were grown in either low or moderate
light. Thus, the second factor was amount of light, with two levels: low light or mod-
erate light. This experiment is an example of a 2 X 2 factorial experiment; it in-
cludes four treatments:

Treatment 1:
Treatment 2:
Treatment 3:

Control, low light
Stress, low light
Control, moderate light

Treatment 4: Stress, moderate light

After 16 days of growth, the plants were harvested, and the total leaf area (cm?) of each

plant was measured. The results are given in Table 11.7.1 and plotted in Figure 11.7.1.16
Table 11.7.1 Leaf area (cm?) of soybean plants
Treatment
Control, Stress, Control, Stress,
low light low light moderate light moderate light
264 235 314 283
200 188 320 312
225 195 310 291
268 205 340 259
215 212 299 216
241 214 268 201
232 182 345 267
256 215 271 326
229 272 285 241
288 163 309 291
253 230 337 269
288 255 282 282
230 202 273 257
Mean 2453 2129 304.1 268.8
SD 27.0 29.7 26.9 35.2
n 13 13 13 13
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Figure 11.7.1 Leaf area of
soybean plants receiving
four different treatments.
Group means indicated by

)
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11.7.2
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There is evidence in Figure 11.7.1 that stress reduces leaf area. This is true under low
light and under moderate light. Likewise, moderate light increases leaf area,
whether or not the seedlings are stressed. ]

A model for this setting is
Yijk = w t 1 Bt g
where y; is the kth observation of level i of the first factor and level j of the second
factor. The term 7; represents the effect of level i of the first factor (stress condition
in Example 11.7.1) and now the term S, represents the effect of level j of the second
factor (light condition in Example 11.7.1).
When studying two factors within a single experiment it helps to organize the

sample means in a table that reflects the structure of the experiment and to present
the means in a graph that features this structure.

Growth of Soybeans Table 11.7.2 summarizes the data of Example 11.7.1. For exam-
ple, when the first factor is at its first level (control) and the second factor is at its
first level (low light), the sample mean is y;; = 245.3. The format of this table per-
mits us easily to consider the two factors—stress condition and light condition—
separately and together. The last column shows the effect of light at each stress
level. The numbers in this column confirm the visual impression of Figure 11.7.1:
Moderate light increases average leaf area by roughly the same amount when the
seedlings are stressed as it does when they are not stressed. Likewise, the last row
(—32.4 versus —35.3) shows that the effect of stress is roughly the same at each level
of light. ]

Table 11.7.2 Mean leaf areas for soybean experiment

Light condition

Low light =~ Moderate light  Difference

Shaking Control 2453 304.1 58.8
condition Stress 212.9 268.8 55.9
Difference —-32.4 —353

If the joint influence of two factors is equal to the sum of their separate influences,
the two factors are said to be additive in their effects. For instance, consider the soy-
bean experiment of Example 11.7.1. If stress reduces mean leaf area by the same



Figure 11.7.2 Data and
treatment means for
soybean experiment

Figure 11.7.3 Interaction
graph for soybean
experiment
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amount in either light condition, then the effect of stress (a negative effect in this
case) is added to the effect of light. To visualize this additivity of effects, consider
Figure 11.7.2, which shows the data with the four treatment means. The solid lines
connecting treatment means are almost parallel because the data display a pattern
of nearly perfect additivity.*
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When the effects of factors are additive we say that there is no interaction between
the factors. A graph that displays only the treatment means is often called an inter-
action graph. Figure 11.7.3, which is a summary version of Figure 11.7.2, is an inter-
action graph highlighting the effect of stress on mean leaf area for the two light
conditions. Analogous graphs can be made to draw the focus to comparing the effect
of light on mean leaf area for the two stress conditions.
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Sometimes the effect that one factor has on a response variable depends on the
level of a second factor. When this happens we say that the two factors interact in
their effect on the response. The following is an example.

*The difference between the mean leaf area for stress under low light (212.9) and the mean leaf area for control
under low light of (245.3) is called the simple effect of shaking under low light. Thus, the simple effect of shaking
under low light is 212.9 — 2453 = —32.4. Likewise, the simple effect of shaking under moderate light is
268.8 — 304.1 = —35.3. A main effect is an average of simple effects. For example, the main effect of shaking is
(—32.4 + —35.3)/2 = —33.85. The main effect of light is (58.8 + 55.9)/2 = 57.35.
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Example
11.7.3

Figure 11.7.4 Interaction
graph for drink
supplementation experiment

Iron Supplements in Milk-Based Fruit Beverages Iron and zinc fortification of milk-based
fruit drinks are common practice. To better understand the effects of drink fortifica-
tion on the cellular retention of iron, researchers conducted an experiment by forti-
fying milk-based fruit drinks with low and high levels of iron (Fe) and zinc (Zn). The
drinks were digested in a simulated gastrointestinal tract and cellular iron retention
was measured (ug Fe/mg cell protein). Table 11.7.3 summarizes the data, which in-
cluded eight observations for each combination of Fe and Zn supplementation lev-
els.'” Figure 11.7.4 is an interaction graph showing the four means. Note that when
the Zn supplementation level is low, the effect of the Fe supplementation on cellular
retention is much smaller than when the Zn supplementation level is high (i.e., the
slopes of the two lines differ —the lines are not parallel). Thus, the effect of Fe sup-
plementation on mean cellular retention depends on the amount of Zn supplemen-
tation used. We say that Fe and Zn interact in their effects on cellular retention. =

Table 11.7.3 Mean iron retention (pg Fe/mg cell protein)
for drink supplement experiment

Zn Level
Lo—Hi Difference
Fe Lo 0.707 0.215 —0.492
Level Hi 0.994 1.412 0.418

Difference 0.287 1.197

1.4 —

Fe retention
(ng Fe /mg cell protein)
|

0.6 —

0.2 —

I I
Low Fe High Fe

When we suspect that two factors interact in an ANOVA setting, we can extend
our model by adding an interaction term:

Yijk =m0t 1+ B+ v g
Here the term v;; is the effect of the interaction between level i of the first factor and
level j of the second factor. As before, if there are n. total observations, then
df(total) = n. — 1. If there are [ levels of the first factor, then it has / — 1 degrees
of freedom. Likewise, if there are J levels of the second factor, then it has / — 1 de-
grees of freedom. There are (/ — 1) X (J — 1) interaction degrees of freedom.

With 7 levels of the first factor and J levels of the second factor there are 1J treat-
ment combinations. Thus, df(within) = n. — 1J.*

*This is analogous to the definition of df(within) = n. — I for one-way ANOVA from Section 11.2. In each set-
ting df(within) = total number of observations — number of treatments.
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A null hypothesis of interest is that all interaction terms are zero:

Hyyin =vynp=""=yy=0

To test this null hypothesis we calculate

MS(interaction)

F =
s MS(within)

and reject Hy if the P-value is too small.

Iron Supplements in Milk-Based Fruit Beverages Table 11.7.4 shows the analysis of vari-
ance results for the drink supplement experiment of Example 11.7.3. This table in-
cludes a line for the interaction term.* There were eight observations at each
combination of Fe and Ze supplementation level; thus n. = 32 and df(total) = 31.
In this example I = J = 2, so df(Fe levels) = df(Zn levels) = df(interaction) = 1.
We can find df(within) by subtraction: df(within) =31 — 1 — 1 — 1 = 28. (This
agrees with the formula df(within) = n. — IJ =32 — 2 X 2.)

To test whether Fe and Zn supplementation levels interact we use the F ratio
1.6555/0.0019 = 871.3, which has degrees of freedom 1 for the numerator and 28
for the denominator. From Table 10 we bracket the P-value as P-value < 0.0001.
The P-value is extremely small, indicating that the interaction pattern seen in
Figure 11.7.4 is more pronounced than would be expected by chance alone. Thus,

we reject Hy,. [
Table 11.7.4 ANOVA table for drink supplement experiment
Source df SS MS Fratio
Between Fe levels 1 4.4023 4.4023 2317.0
Between Zn levels 1 0.0109 0.0109 5.736
Interaction 1 1.6555 1.6555 871.3
Within groups 28 0.0523 0.0019
Total 31 6.1210

The concept of interaction occurs throughout biology. The terms “synergism” and
“antagonism” describe interactions between biological agents. The term “epistasis”
describes interaction between genes at two loci.

When interactions are present, as in Example 11.7.3, the main effects of factors
don’t have their usual interpretations. Regarding Example 11.7.3, it is difficult to
state the independent effect of Fe because the nature and magnitude of the effect
depends on the particular level of Zn supplementation. Because of this, we usually
test for the presence of interactions first. If interactions are present, as in the drink
supplementation example, then we often stop the analysis at this stage. If no evi-
dence for an interaction effect is found (that is, if we do not reject H), then we pro-
ceed to testing the main effects of the individual factors. The following example
illustrates this process.

*The ANOVA formulas that are used to calculate the sum of squares due to interaction are rather messy and
aren’t presented here. In particular, it matters whether or not the design is “balanced.” The drink supplementa-
tion experiment is balanced in that there are eight observations in each of the four combinations of factor levels
shown in Table 11.7.3. However, unbalanced designs, which lead to complicated calculations and analyses, are
possible. We rely here on computer software to calculate the necessary sums of squares.
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Example

11.7.5

Example
11.7.6

Growth of Soybeans Table 11.7.5 is an analysis of variance table for the soybean
growth data of Example 11.7.1. The null hypothesis

Hyyn =y =yyu=v2=0
is tested with the Fratio

MS(interaction)  26.3
MS(within) ~ 895.34

Looking in Table 10 with degrees of freedom 1 and 12, we see that the P-value is
greater than 0.20; thus there is no significant evidence for an interaction and we do
not reject H,.

Since there is no evidence of interactions, we test the main effect of stress level.
Here the Fratio is

F, = = 0.029

MS(between stress levels)  14858.5

F =
’ MS(within) 895.34

= 16.6

This is highly significant (i.e., the P-value is very small) and we reject H.
Likewise, the test for the main effect of light levels has an F ratio of

MS(between light levels)  42751.6

E = MS(within) gos34 47

Again, this is highly significant and we reject H,. m
Table 11.7.5 ANOVA table for soybean growth experiment
Source df SS MS Fratio
Between stress levels 1 14858.5 14858.5 16.60
Between light levels 1 42751.6 42751.6 47.75
Interaction 1 26.3 26.3 0.029
Within groups 48 42976.3 895.34
Total 51 100612.7

Interaction graphs can be used when there are more than two levels for a factor,
as in the next example.

Toads Researchers studied the effect that exposure to ultraviolet-B radiation
has on the survival of embryos of the western toad Bufo boreas. They con-
ducted an experiment in which several B. borea embryos were placed at one of
three water depths—10 cm, 50 cm, or 100 cm—and one of two radiation settings —
exposed to UV-B radiation or shielded. The response variable was the percent-
age of embryos surviving to hatching. Table 11.7.6 summarizes the data, which

Table 11.7.6 Percent embryos surviving for toads experiment
UV-B
Exposed Shielded Difference
Water 10 cm 0.425 0.759 0.334
depth 50 cm 0.729 0.748 0.019
100 cm 0.785 0.766 —0.019
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included four observations at each combination of depth and UV-B exposure.
Figure 11.7.5 is an interaction graph showing the six means. The presence of
interactions here is readily apparent. Table 11.7.7 summarizes the analysis of

variance.'® [
Figure 11.7.5 Interaction
graph for toad experiment
0.8 — Exposed
@ ==~" Shielded
2z 0.7+
>
3
=
2 0.6 —
5}
3
B 05—
0.4 —
I I I
10 cm 50 cm 100 cm
Water depth
Table 11.7.7 ANOVA table for toad experiment
Source df SS MS F ratio
Between water depths 2 0.150676 0.075338 13.92
Between UV-B levels 1 0.074371 0.074371 13.74
Interaction 2 0.150185 0.075093 13.88
Within groups 18 0.097401 0.005411
Total 23 0.472633
The topic of interactions is also discussed in Section 11.8.
Exercises I 1.7.1-11.7.6
I1L7.1 A plant phylelOngt investigated the effect of RIVER BIRCH EUROPEAN BIRCH
flooding on root metabolism in two tree species: flood- FLOODED CONTROL _ FLOODED CONTROL

tolerant river birch and the intolerant European birch.

Four seedlings of each species were flooded for one day 1.45 L70 021 1.34
and four were used as controls. The concentration of 1.19 2.04 0.58 0.99
adenosine triphosphate (ATP) in the roots of each plant 1.05 1.49 0.11 1.17
was me.asured. Theigdata (nmol ATP per mg tissue) are 1.07 1.91 027 130
shown in the table.

Mean 1.19 1.785 0.2925 1.20

Prepare an interaction graph (like Figure 11.7.3).
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11.7.2 Consider the data from Exercise 11.7.1. For these

data, SS(species of birch) = 2.19781, SS(flooding) =

2.25751, SS(interaction) = 0.097656, and SS(within) =

0.47438.

(a) Construct the ANOVA table.

(b) Carry out an F test for interactions; use @ = 0.05.

(c) Test the null hypothesis that species has no effect on
ATP concentration. Use a = 0.01.

(d) Assuming that each of the four populations has the
same standard deviation, use the data to calculate an
estimate of that standard deviation.

11.7.3 A completely randomized double-blind clinical
trial was conducted to compare two drugs, ticrynafen (T)
and hydrochlorothiazide (H), for effectiveness in treat-
ment of high blood pressure. Each drug was given at either
a low or a high dosage level for six weeks. The accompany-
ing table shows the results for the drop (baseline minus
final value) in systolic blood pressure (mm Hg).?

TICRYNAFEN (T) HYDROCHLOROTHIAZIDE (H)

LOW HIGH LOW HIGH

DOSE DOSE DOSE DOSE
Mean 13.9 171 15.8 17.5
No. of 53 57 55 58

patients

Prepare an interaction graph (like Figure 11.7.3).

11.7.4 Consider the data from Exercise 11.7.3. The differ-

ence in response between T and H appears to be larger

for the low dose than for the high dose.

(a) Carry out an F test for interactions to assess whether
this pattern can be ascribed to chance variation.

Let @ = 0.10. For these data SS(interaction) = 31.33
and SS(within) = 30648.81.

(b) Based on your results in part (a), is it sensible to exam-
ine and interpret the main effects of drug and of dose?

11.7.5 Consider the data from Exercise 11.7.3. For
these data, SS(drug) = 69.22, SS(dose) = 330.00,
SS(interaction) = 31.33, and SS(within) = 30648.81.

(a) Construct the ANOVA table.

(b) Carry out a test of the null hypothesis that the effects
of the two drugs (T and H) are equal. Let a = 0.05.

11.7.6 In astudy of lettuce growth, 36 seedlings were ran-
domly allocated to receive either high or low light and to
be grown in either a standard nutrient solution or one
containing extra nitrogen. After 16 days of growth, the
lettuce plants were harvested and the dry weight of the
leaves was determined for each plant. The accompanying
table shows the mean leaf dry weight (gm) of the 9 plants
in each treatment group.’!

NUTRIENT SOLUTION
STANDARD  EXTRA NITROGEN
Low light 2.16 3.09
High light 3.26 4.48
For these data, SS(nutrient solution) = 10.4006,

SS(light) = 13.95023, SS(interaction) = 0.18923, and
SS(within) = 11.1392.

(a) Construct the ANOVA table.

(b) Carry out an F test for interactions; use @ = 0.05.

(c) Test the null hypothesis that nutrient solution has
no effect on weight. Use a = 0.01.

[ 1.8 Linear Combinations of Means (Optional)

In many studies, interesting questions can be addressed by considering linear combi-
nations of the group means. A linear combination L is a quantity of the form

L =my, + my, + -

+ myy;

where the m’s are multipliers of the y;’s.

Linear Combinations for Adjustment

One use of linear combinations is to “adjust” for an extraneous variable, as illustrat-

ed by the following example.

Example
11.8.1

Forced Vital Capacity One measure of lung function is forced vital capacity (FVC),
which is the maximal amount of air a person can expire in one breath. In a public

health survey, researchers measured FVC in a large sample of people. The results for
male ex-smokers, stratified by age, are shown in Table 11.8.1.%
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Table 11.8.1 FVC in male ex-smokers
FVC (liters)

Age (years) n Mean SD
25-34 83 529 0.76
35-44 102 5.05 0.77
45-54 126 4.51 0.74
55-64 97 4.24 0.80
65-74 73 3.58 0.82
25-74 481  4.56

Suppose it is desired to calculate a summary value for FVC in male ex-smokers.
One possibility would be simply to calculate the grand mean of the 481 observed
values, which is 4.56 liters. But the grand mean has a serious drawback: It cannot be
meaningfully compared with other populations that may have different age distri-
butions. For instance, suppose we were to compare ex-smokers with nonsmokers;
the observed difference in FVC would be distorted because ex-smokers as a group
are (not surprisingly) older than nonsmokers. A summary measure that does not
have this disadvantage is the “age-adjusted” mean, which is an estimate of the mean
FVC value in a reference population with a specified age distribution. To illustrate,
we will use the reference distribution in Table 11.8.2, which is (approximately) the
distribution for the entire U.S. population.?

Table 11.8.2 Age distribution in reference population
Age Relative frequency
25-34 0.23

35-44 022

45-54 0.24

55-64 0.22

65-74 0.09

The “age-adjusted” mean FVC value is the following linear combination:
L = 0.23y; + 0.22y, + 0.24y; + 0.22y, + 0.09y;

Note that the multipliers (m’s) are the relative frequencies in the reference popula-
tion. From Table 11.8.1, the value of L is
L = (0.23)(5.29) + (0.22)(5.05) + (0.24)(4.51) + (0.22)(4.24) + (0.09)(3.58)
= 4.67 liters
This value is an estimate of the mean FVC in an idealized population of people who

are biologically like male ex-smokers, but whose age distribution is that of the refer-
ence population. [

Contrasts

A linear combination whose multipliers (m’s) add to zero is called a contrast. The
following example shows how contrasts can be used to describe the results of an
experiment.
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Example Growth of Soybeans Table 11.8.3 shows the treatment means and sample sizes for the
11.8.2 soybean growth experiment of Example 11.6.8. We can use contrasts to describe the
effects of stress in the two temperature conditions.

Table 11.8.3 Soybean growth data

Mean leaf
Treatment area (cm?) n
1. Control, low light 245.3 13
2. Stress, low light 212.9 13
3. Control, moderate light 304.1 13
4. Stress, moderate light 268.8 13

(a) First, note that an ordinary pairwise difference is a contrast. For instance, to
measure the effect of stress in low light we can consider the contrast

L=y —Yy,=2453 — 2129 = 324

For this contrast, the multipliers are m; = 1, my, = —1, m3 = 0, my = 0; note
that they add to zero.

(b) To measure the effect of stress in moderate light we can consider the contrast
L =7y;— Yy, =304.1 — 268.8 = 35.3

For this contrast, the multipliers are m; = 0,m, = 0,m3 = 1,my = —1.

(c) To measure the overall effect of stress, we can average the contrasts in parts
(a) and (b) to obtain the contrast

1 1.
L= E(yl -y + E()@ = V1)
1 1
= 5(32.4) + 5(35.3) = 33.85

For this contrast, the multipliers are m; = 3, m, = —%, m3 = S, my = —3. =

Standard Error of a Linear Combination

Each linear combination L is an estimate, based on the y’s, of the corresponding lin-
ear combination of the population means (u’s). As a basis for statistical inference,
we need to consider the standard error of a linear combination, which is calculated
as follows.

— Standard Error of L

The standard error of the linear combination

L =my +my, + - + mpy;
is
1 ml2
SEL = Spooled
i=1 N

where Syo01ea = V MS(within) from the ANOVA.




Section 11.8 Linear Combinations of Means (Optional) 459

The SE can be written explicitly as

mi m mi
SEL = Spooled — +t — 4+ -+ —
m n ny

If all the sample sizes (n;) are equal, the SE can be written as

2 2 2
SE, = (m1+m2++m[) _ 1 ! 2
L = Spooled n — Spooled ; Emi
i=1

The following two examples illustrate the application of the standard error formula.

Example Forced Vital Capacity For the linear combination L defined in Example 11.8.1, we find
11.8.3 that
Lomf 0232 0222 024> 0222 0.09
> — = + + + +
~ n; 83 102 126 97 73

0.0021789

The ANOVA for these data yields syooq = V0.59989 = 0.77453. Thus, the standard
error of L is

SE; = 0.77453V/0.0021789 = 0.0362 [
Example Growth of Soybeans For the linear combination L defined in Example 11.8.2(a), we
11.8.4 find that
1
Emlz = (1) + (-1 + (0> + (0)> =2
=
so that
2

SEL = Spooled B |

Confidence Intervals

Linear combinations of means can be used for testing hypotheses and for constructing
confidence intervals. Critical values are obtained from Student’s ¢ distribution with

df = df(within)

from the ANOVA.* Confidence intervals are constructed using the familiar Stu-
dent’s t format. For instance, a 95% confidence interval is

L £ 1)»sSE

The following example illustrates the construction of the confidence interval.

Example Growth of Soybeans Consider the contrast defined in Example 11.8.2(c):
11.8.5

1 1.
L= E(yl_y2)+ 5(y3—y4)

*This method of determining critical values does not take account of multiple comparisons. See Section 11.9.
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This contrast is an estimate of the quantity

1 1
A= E(Ml - ) t 5(#3‘#4)

which can be described as the true (population) effect of stress, averaged over the
light conditions. Let us construct a 95% confidence interval for this true difference.
We found in Example 11.8.2 that the value of L is

L = 3385

To calculate SE;, we first calculate

i, (Y

o W (Y

1
> = + = 2
~ n 13 13 13 13 13

From the ANOVA, which is shown in Table 11.8.4, we find that sp,eq = V895.34 =

29922, tl 1us,
! m2 1
SE! = spooled\’ ~ 7[ = 29922\ ,17 = 8.299

Table 11.8.4 ANOVA table for soybean growth experiment

Source df SS MS Fratio
Between stress depths 1 14858.5 14858.5 16.60
Between light levels 1 42751.6 42751.6 47.75
Interaction 1 26.3 26.3 0.029
Within groups 48 42976.3 895.34

Total 51 100613

From Table 4 with df = 40 = 48, we find t49 005 = 2.021. The confidence
interval is

33.85 + (2.021)(8.299)
33.85 + 16.77

or (17.1,50.6).

We are 95% confident that the effect of stress, averaged over the light condi-
tions, is to reduce the leaf area by an amount whose mean value is between 17.1 cm?
and 50.6 cm?. [

t Tests

To test the null hypothesis that the population value of a contrast is zero, the test
statistic is calculated as
L

.= —
s~ SE,

and the ¢ test is carried out in the usual way. The ¢ test will be illustrated in Example
11.8.6.
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11.8.6
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Contrasts to Assess Interaction

Sometimes an investigator wishes to study the separate and joint effects of two or
more factors on a response variable Y. In Section 11.7 the concept of interaction be-
tween two factors was introduced. Linear contrasts provide another way to study
such interactions. The following is an example.

Growth of Soybeans In the soybean growth experiment (Example 11.6.8 and
Example 11.8.2), the two factors of interest are stress condition and light level. Table
11.8.5 shows the treatment means, arranged in a new format that permits us easily to
consider the factors separately and together.

Table 11.8.5 Mean leaf areas for soybean experiment

Light condition

Low light Moderate light Difference
Shaking Control 2453 (1) 304.1 (3) 58.8
condition Stress 212.9 (2) 268.8 (4) 55.9
Difference —324 —353

At each light level, the mean effect of stress can be measured by a contrast:

Effect of stress in low light: Vo — y1 = 2129 — 2453 = -324
Effect of stress in moderate light: 'y, — y; = 268.8 — 304.1 = —35.3

Now consider the question: Is the reduction in leaf area due to stress the same in
both light conditions? One way to address this question is to compare (y, — y;) ver-
sus (y4 — y3); the difference between these two values is a contrast:

L=@2=y)~0s— )

= =324 — (-353) =29

This contrast L can be used as the basis for a confidence interval or a test of hypothe-
sis. We illustrate the test. The null hypothesis is

Hp: (2 — p1) = (1g — H3)
or, in words,

Hy: The effect of stress is the same in the two light conditions.

1 2

; 4
For the preceding L, >, 7’ = and the standard error is
=1 N

SN E SO
E. = - = ) =29.9224/— = 16.
S L Spooled\/gini Spooled ( 3 ) 99 13 6.6

The test statistic is

2.9

t, = 166 =02

From Table 4 with df = 40 we find #4,9 = 1.303. The data provide virtually no evi-
dence that the effect of stress is different in the two light conditions. This is consistent
with the F test for interactions conducted in Example 11.7.5. ]
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Example
11.8.7

The statistical definition of interaction introduced in Section 11.7 and viewed
through the lens of contrasts here is rather specialized. It is defined in terms of the
observed variable rather than in terms of a biological mechanism. Further, interac-
tion as measured by a contrast is defined by differences between means. In some ap-
plications the biologist might feel that ratios of means are more meaningful or
relevant than differences. The following example shows that the two points of view
can lead to different answers.

Chromosomal Aberrations A research team investigated the separate and joint effects
in mice of exposure to high temperature (35 °C) and injection with the cancer drug
cyclophosphamide (CTX). A completely randomized design was used, with eight
mice in each treatment group. For each animal, the researchers measured the inci-
dence of a certain chromosomal aberration in the bone marrow; the result is ex-
pressed as the number of abnormal cells per 1,000 cells. The treatment means are
shown in Table 11.8.6.%4

Table 11.8.6 Mean incidence of chromosomal aberrations
following various treatments

Injection
CTX None

Temperature Room 23.5 2.7
High 75.4 20.9

Is the observed effect of CTX greater at room temperature or at high temperature?
The answer depends on whether “effect” is measured absolutely or relatively.
Measured as a difference, the effect of CTX is

Room temperature: 23.5 — 2.7 = 20.8
High temperature: 754 — 20.9 = 54.5

Thus, the absolute effect of CTX is greater at the high temperature. However, this
relationship is reversed if we express the effect of CTX as a ratio rather than as a
difference:

23.5

Room temperature: 72 7 = 8.70
75.4

High't ture: —— = 3.61
igh temperature 209

At room temperature CTX produces almost a ninefold increase in chromoso-
mal aberrations, whereas at high temperature the increase is less than fourfold; thus,
in relative terms, the effect of CTX is much greater at room temperature. m

If the phenomenon under study is thought to be multiplicative rather than ad-
ditive, so that relative rather than absolute change is of primary interest, then ordi-
nary contrasts should not be used. One simple approach in this situation is to use a
logarithmic transformation —that is, to compute Y’ = log (Y), and then analyze Y’
using contrasts. The motivation for this approach is that relations of constant
relative magnitude in the Y scale become relations of constant absolute magnitude
in the Y scale.
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11.8.1 Refer to the FVC data of Example 11.8.1.

(a) Verify that the grand mean of all 481 FVC values is
4.56.

(b) Taking into account the age distribution among the 481
subjects and the age distribution in the U.S. population,
explain intuitively why the grand mean (4.56 liters) is
smaller than the age-adjusted mean (4.67 liters).

11.8.2 To see if there is any relationship between blood
pressure and childbearing, researchers examined data
from a large health survey. The following table shows the
data on systolic blood pressure (mm Hg) for random
samples from two populations of women: women who
had borne no children and women who had borne five or
more children. The pooled standard deviation from all
eight groups was spooicq = 18 mm Hg.25

FIVE OR MORE
NO CHILDREN CHILDREN
MEAN MEAN
BLOOD NO. OF BLOOD NO. OF
AGE PRESSURE  ~ WOMEN  PRESSURE WOMEN
18-24 113 230 114 7
25-34 118 110 116 82
35-44 125 105 124 127
45-54 134 123 138 124
18-54 121 568 127 340

Carry out age adjustment, as directed, using the following
reference distribution, which is the approximate distribu-
tion for U.S. women:2®

AGE RELATIVE FREQUENCY
18-24 0.17
25-34 0.29
35-44 0.31
45-54 0.23

(a) Calculate the age-adjusted mean blood pressure for
women with no children.

(b) Calculate the age-adjusted mean blood pressure for
women with five or more children.

(c) Calculate the difference between the values ob-
tained in parts (a) and (b). Explain intuitively why
the result is smaller than the unadjusted difference
of 127 — 121 = 6 mg Hg.

(d) Calculate the standard error of the value calculated
in part (a).

(e) Calculate the standard error of the value calculated
in part (c).

11.8.3 Refer to the ATP data of Exercise 11.7.1. The sam-
ple means and standard deviations are as follows:

RIVER BIRCH EUROPEAN BIRCH

FLOODED = CONTROL  FLOODED CONTROL
y 1.19 1.78 0.29 1.20
s 0.18 0.24 0.20 0.16

Define linear combinations (that is, specify the multipli-
ers) to measure each of the following:

(a) The effect of flooding in river birch

(b) The effect of flooding in European birch

(c) The difference between river birch and European
birch with respect to the effect of flooding (that is,
the interaction between flooding and species)

11.8.4 (Continuation of Exercise 11.8.3)

(a) Use a t test to investigate whether flooding has the
same effect in river birch and in European birch. Use
a nondirectional alternative and let & = 0.05. (The
pooled standard deviation is spyoieq = 0.199.)

(b) If the sample sizes were n = 10 rather than n = 4 for
each group, but the means, standard deviations, and
Spooled Temained the same, how would the result of
part (a) change?

11.8.5 (Continuation of Exercise 11.8.4)

Consider the null hypothesis that flooding has no effect on
ATP level in river birch. This hypothesis could be tested in
two ways: as a contrast (using the method of Section 11.8),
or with a two-sample ¢ test (as in Exercise 7.2.11). Answer
the following questions; do not actually carry out the tests.
(a) In what way or ways do the two test procedures differ?

(b) In what way or ways do the conditions for validity of
the two procedures differ?

(c) One of the two procedures requires more conditions
for its validity, but if the conditions are met, then this
procedure has certain advantages over the other one.
What are these advantages?

11.8.6 Consider the data from Exercise 11.7.3 in which
the drugs ticrynafen (T) and hydrochlorothiazide (H) were
compared. The data are summarized in the following table.
The pooled standard deviation is s,qo1cq = 11.83 mm Hg.

TICRYNAFEN (T) HYDROCHLOROTHIAZIDE (H)

LOW HIGH LOW HIGH

DOSE DOSE DOSE DOSE
Mean 13.9 17.1 15.8 17.5
No. of 53 57 55 58

patients
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If the two drugs have equal effects on blood pressure,
then T might be preferable because it has fewer side
effects.

(a) Construct a 95% confidence interval for the differ-
ence between the drugs (with respect to mean blood
pressure reduction), averaged over the two dosage
levels.

(b) Interpret the confidence interval from part (a) in the
context of this setting.

11.8.7 Consider the lettuce growth experiment described
in Exercise 11.7.6. The accompanying table shows the
mean leaf dry weight (gm) of the nine plants in each
treatment group. MS(within) from the ANOVA was
0.3481.

NUTRIENT SOLUTION
STANDARD EXTRA NITROGEN

Low light 2.16 3.09
High light 3.26 4.48

Construct a 95% confidence interval for the effect of
extra nitrogen, averaged over the two light conditions.

11.8.8 Refer to the MAO data of Exercise 11.4.1.

(a) Define a contrast to compare the MAO activity for
schizophrenics without paranoid features versus the
average of the two types with paranoid features.

(b) Calculate the value of the contrast in part (a) and its
standard error.

(c) Apply a ¢ test to the contrast in part (a). Let H4 be
nondirectional and = 0.05.

11.8.9 Are the brains of left-handed people anatomically
different? To investigate this question, a neuroscientist
conducted postmortem brain examinations in 42 people.
Each person had been evaluated before death for hand

preference and categorized as consistently right-handed
(CRH) or mixed-handed (MH). The table shows the re-
sults on the area of the anterior half of the corpus callo-
sum (the structure that links the left and right
hemispheres of the brain).”” The MS(within) from the
ANOVA was 2,498.

AREA (MM?)
GROUP MEAN  SD n
1. Males: MH 423 48 5

2. Males: CRH 367 49
3. Females: MH 377 63 10
4. Females: CRH 345 43 20

(a) The difference between MH and CRH is 56 mm? for
males and 32 mm? for females. Is this sufficient evi-
dence to conclude that the corresponding population
difference is greater for males than for females? Test
an appropriate hypothesis. (Use a nondirectional al-
ternative and let &« = 0.10.)

(b) As an overall measure of the difference between
MH and CRH, one can consider the quantity
0.5(p1 — po) + 0.5(p3 — py). Construct a 95% con-
fidence interval for this quantity. (This is a sex-ad-
justed comparison of MH and CRH, where the
reference population is 50% male and 50% female.)

11.8.10 Consider the daffodil data of Exercise 11.4.5.

(a) Define a contrast to compare the stem length for
daffodils from the open area versus the average of
the north, south, east and west sides of the building.

(b) Calculate the value of the contrast in part (a) and its
standard error.

(c) Apply a ¢ test to the contrast in part (a). Let H4 be
nondirectional and & = 0.05.

1.9 Multiple Comparisons (Optional)

After conducting a global F test, we may find that there is significant evidence for

a difference among the population means iy, Uy, ...
often interested in a detailed analysis of the sample means Y},Y,, .

, 47 In this situation, we are
.., Y, consid-

ering all pairwise comparisons. That is, we wish to test all possible pairwise

hypotheses:

and so on.

Hy:py = po
Hy: py = ps
Hy: py = 3
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We saw in Section 11.1 that using repeated ¢ tests leads to an increased overall
risk of Type I error (e.g., finding evidence for a difference in population means
when, in fact, there is no difference). In fact, it was this increased risk of Type I
error that motivated the global F test in the first place. In this section we describe
three multiple comparison methods to control the overall risk of Type I error:
Bonferroni’s method, Fisher’s Least Significant Difference, and Tukey’s Honest
Significant Difference. First, however, we must examine the different types of Type 1
error that arise when considering multiple comparisons.

Experimentwise versus Comparisonwise Error

Consider a study involving the comparison of four population means: uy, y,, us, and
Us. As noted in Section 11.1, there are six possible comparisons:

Hypy = pp Hopo = p3 Hoopg = pg Hopo = ps Hopp = py Hotps = g

When considering these six comparisons we can speak of the chance of a Type I
error for a particular comparison, say Hy: u; = u,,called the comparisonwise Type 1
error rate («.,,), or we can speak of the chance of making a Type I error among
any of the six comparisons, called the experimentwise Type I error rate (a,,,).*
For example, Table 11.1.2 displays the experimentwise Type I error rates for com-
paring different numbers of groups when the comparisonwise Type I error rate is
Qg = 0.05.

While the relationship between «,, and «,,, may be complex, it is always true
that

aew = k X acw

where k is the number of comparisons. Thus, if six independent comparisons were
made at the «,,, = 0.05 level, the experimentwise Type I error rate («,,,) is at most
6 x 0.05 = 0.30.

Fisher’s Least Significant Difference

In optional Section 11.8 we described a procedure for estimating linear contrasts.
Fisher’s Least Significant Difference (LSD) uses this procedure to produce all
pairwise confidence intervals for differences of population means using «.,, = «,
the Type I error rate used in the ANOVA. Intervals that do not contain zero pro-
vide evidence for a significant difference between the compared population
means.

An example of the procedure follows.

Oysters and Seagrass In a study to investigate the effect of oyster density on sea-
grass biomass, researchers introduced oysters to thirty 1-m? plots of healthy
seagrass. At the beginning of the study the seagrass was clipped short in all plots.
Next, 10 randomly chosen plots received a high density of oysters; 10, an interme-
diate density; and 10, a low density. As a control, an additional 10 randomly cho-
sen clipped 1-m? plots received no oysters. After two weeks, the belowground

*Although the term experimentwise contains the word experiment, this terminology pertains to both experi-
ments and observational studies.
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seagrass biomass was measured in each plot (g/m?). Data from some plots are
missing. A summary of the data (Table 11.9.1) as well as the ANOVA table (Table
11.9.2) follow.?®

Table 11.9.1 Belowground seagrass biomass (g/m?)
Oyster density
None (1) Low (2) Intermediate (3) High (4)
Mean 34.81 33.13 28.33 15.00
SD 13.44 17.36 17.11 10.97
n 9 10 8 10

Table 11.9.2 ANOVA summary of belowground seagrass biomass (g/m?)

df Sum of squares Mean squares E P-value
Between 3 2365.5 788.51 3.5688 0.0243
Within 33 7291.1 220.94
Total 36 9656.6

The P-value for the ANOVA is 0.0243, indicating that there is significant evidence
of a difference among the biomass means under these experimental conditions.
Having evidence for a difference we proceed with comparisons.

Recall that for any linear contrast L = myy; + m,y, + - + m;yy,

1 m[Z
SEL = Spooled
i=1 1

where

Spooled =V MS(within)

Thus, to compare the no oyster condition (1) to the low oyster density condition (2)
we define Dy, = Y; — Y, so that as a linear contrast we have

dip = 1y, + (=1)y, + Oy + Oy,
= (1)(34.81) + (—1)(33.13) + (0)(28.33) + (0)(15.00)
=34.81 — 33.13 = 1.68

and, since Spooeq = V220.94 = 14.86, we have

1)2 2 02
— 14.86 X /= +—
SE 86 \/ 8 10

11
= 14.86 X [~ + —
80X\ " 10

= 6.82
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A 95% confidence interval for the population mean difference in belowground
biomass for the no oyster condition compared to the low oyster density condition,

M1 — Mo, ls given by

d12 + t3370_025 X S]ED12 = 168 + 20345 X 682
= 1.68 + 13.89
= (-12.21,15.57)

We are 95% confident that the mean belowground biomass when there are no
oysters is between 12.21 g/m? lower to 15.57 g/m? higher than when there is a low
density of oysters. Since this interval contains zero, there is no evidence that the
mean belowground biomass differs for these two conditions.

Repeating this process for the remaining five comparisons produces the inter-
mediate computations and final intervals summarized in Table 11.9.3.

Table 11.9.3 Intermediate computations and 95% Fisher’s LSD intervals comparing belowground biomass under
different oyster density conditions

Comparison dip = Yo — ¥ NV (UUng) + (U/ny) SEp, = Spociea X V (1/n,) + (1/ny) 133005 X SEp,,

None-low 1.68 0.459 6.828 13.891

None-intermediate 6.48 0.486 7.221 14.690

None-high 19.81 0.459 6.828 13.891

Low-intermediate 4.80 0.474 7.049 14.341

Low-high 18.13 0.447 6.646 13.520

Intermediate-high 13.33 0.474 7.049 14.341

Comparison Lower 95% Upper 95%

None-low -12.2 15.6

None-intermediate —8.2 21.2

None-high 5.9 33.7

Low-intermediate -9.5 19.1

Low-high 4.6 31.7

Intermediate—high -1.0 27.7

“Intervals not containing zero (i.e., there is a statistically significant difference between the group means) are in italics. Note that an

interval will not contain zero whenever [D,,| > t X SE, . (The value of 33 0p5 = 2.0345 was determined using a computer. Using

Table 4 we would obtain very similar results using the value listed for 30 degrees of freedom, t30 025 = 2.042.)

From Table 11.9.3 we observe that the only comparisons showing significant dif-
ferences in mean biomass are the no- to high-oyster density and low- to high-oyster
densities. [

A general formula for computing a 100(1 — @)% Fisher LSD interval for
(pq — mp) is given in the following box.
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— 100(1 — a)% Fisher LSD Interval for (u, — wp)
dgy £ tyan X SEp,,
where
dab = ya - yb
[1 1
SED“,, = Spooled ’Ta + ”Tb
Spooled =V MS(within)
and
df = df(within)

How does Fisher’'s LSD control the experimentwise Type | error rate? One
should use Fisher’s LSD comparisons only after rejecting the ANOVA global null
hypothesis that all population means are equal: Hy g = uo = --- = u;. The
ANOVA global F test acts as a screening procedure for the multiple comparisons
and thus offers control over ay,,.

Displaying Results

The presentation of all six Fisher LSD intervals for the seagrass example in Table
11.9.3 is a useful working summary but is not suitable for effective communication
of results. To organize the results for presentation in a simple table we take the fol-
lowing steps.

Step 1 Array of group labels. Arrange the group labels in increasing order of their
means.

Step 2 Systematic comparison of means, underlining nonsignificant differences.

(a) Begin by examining the interval comparing the largest and smallest
means. If the interval contains zero, the difference in means is not sta-
tistically significant and a line is drawn under the array of group labels
to “connect” the groups with the largest and smallest means. If the
interval does not contain zero, proceed to the next step.

(b) Ignore the group with the smallest mean and compare the remaining
subarray of / — 1 means. As in step (2a), if the interval contains zero,
the difference in means is not statistically significant and a line is drawn
under the array of group labels being compared to “connect” the
groups. Next consider the other subarray of / — 1 means—the means
that remain if the group with the largest mean is ignored. Again, under-
line this subarray if the interval contains zero.

(c) Repeat step (2b) by successively comparing all subarrays of size I — 2,
I — 3, and so on, until an interval is produced that contains zero or no
more comparisons are possible.
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Important Notes: During this procedure, never make a comparison within any
subarray that has already been underlined; these group means are automatically
declared not statistically significantly different. Also, when underlining, use a sepa-
rate line for each step; never join a line to one that has already been drawn.

Step 3 Translate the underlines to a tabular summary. Create a summary table of
the data using superscript letters to indicate which groups are not statisti-
cally significantly different.

Oysters and Seagrass In this example we will follow the preceding procedure to dis-
play the oyster and seagrass Fisher’s LSD comparisons displayed in Table 11.9.3.

Step1 We first arrange the labels in order of the means (shown in Table 11.9.1).
High Intermediate Low None

Step 2 We compare the groups with the smallest (high oyster density) and largest
(no oysters) means: inone — Muigh = (5.9, 33.7). This interval does not con-
tain zero, so these means are significantly different and no underline is
made.* We now proceed to the next set (step 2b), the comparisons of subar-
rays of three means. First, we compare Intermediate to None:

MNone — MIntermediate — (_8-2>21-2)
This interval contains zero, so an underline is drawn as shown.

High Intermediate Low None

This underline indicates that these three groups do not have signifi-
cantly different means. We now compare the next subarray of three
means, High to Low: wpigh — Mrow = (4.6,31.7). This interval does not
contain zero, so no underlines are drawn. There is evidence for a differ-
ence in mean belowground biomass between the high and low oyster-
density conditions.

Having compared all subarrays of three means, we continue with subar-
rays of two means. The only subarray of two means not already connected
with an underline is the High-Intermediate comparison. This interval
Mintermediate — MHigh = (—1.0,27.7) contains zero, so an underline is drawn
as shown.

High Intermediate Low None

Step 3 Communicating these results, we give each line a letter and display these
letters as superscripts in our table of group means as shown below and
in Table 11.9.4. A graphical display is also possible and is displayed in
Figure 11.9.1.

High Intermediate Low None
a
b m

*Intuitively, this interval should not contain zero since we have rejected the global F test null hypothesis, though
there are some instances where the results of our multiple comparison procedure and global F test may not
agree.
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Figure 11.9.1
Belowground seagrass
biomass (g/m?) for
different levels of oyster
density. Bars display means
plus one standard error.
Groups sharing a common
overbar are not statistically
significantly different based
on Fisher’s LSD
comparisons with

ey = 0.05

Table 11.9.4 Belowground seagrass biomass (g/m?) for different levels of oyster
density
Oyster density
None Low Intermediate High
Mean 34.8° 33.1° 28.32P 15.0°
SD 134 17.4 17.1 11.0
n 9 10 8 10
“Groups sharing a common superscript have means that are not statistically significantly
different based on Fisher’s LSD comparisons with «,, = 0.05.
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The Bonferroni Method

The Bonferroni method is based on a very simple and general relationship: The prob-
ability that at least one of several events will occur cannot exceed the sum of the indi-
vidual probabilities. For instance, suppose we conduct six tests of hypotheses, each at
a,y = 0.01.Then the overall risk of Type I error «,,,—that is, the chance of rejecting at
least one of the six hypotheses when in fact all of them are true —cannot exceed

0.01 + 0.01 + 0.01 + 0.01 + 0.01 + 0.01 = (6)(0.01) = 0.06

Turning this logic around, suppose an investigator plans to conduct six tests of hy-
potheses and wants the overall risk of Type I error not to exceed a,,, = 0.05. A con-
servative approach is to conduct each of the separate tests at the significance level
ay = 0.05/6 = 0.0083; this is called a Bonferroni adjustment.

Note that the Bonferroni technique is very broadly applicable. The separate
tests may relate to different response variables, different subsets, and so on; some
may be ¢ tests, some chi-square tests, and so on.

The Bonferroni approach can be used by a person reading a research report, if
the author has included explicit P-values. For instance, if the report contains six P-
values and the reader desires overall 5%-level protection against Type I error, then
the reader will not regard a P-value as sufficient evidence of an effect unless it is
smaller than «,,, = 0.0083.

A Bonferroni adjustment can also be made for confidence intervals. For in-
stance, suppose we wish to construct six confidence intervals and desire an overall
probability of 95% that all the intervals contain their respective parameters
(@epy = 0.05). Then this can be accomplished by constructing each interval at confi-
dence level 99.17% (because 0.05/6 = 0.0083 and 1 — 0.0083 = 0.9917).
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In general, to construct k Bonferonni-adjusted confidence intervals with an
overall probability of 100(1 — «,,,)% that all the intervals contain their respective
parameters, we construct each interval at confidence level 100(1 — «,,)% where
Qe = Qg/k. The mechanics of the computations are identical to those used for
Fisher’s LSD except the value of the 7 multiplier is modified: #4,,, »- Note that the
application of this idea requires unusual critical values, so that standard tables are
not sufficient. Table 11 (at the end of this book) provides Bonferroni multipliers for
confidence intervals that are based on a ¢ distribution. Software can also be used to
produce appropriate multipliers. Example 11.9.3 illustrates this idea.

Oysters and Seagrass To compute the Bonferroni adjusted experimentwise 95%
(@epy = 0.05) confidence intervals for our oyster and seagrass example, we first re-
call that a total of six comparisons are required so that a,,, = 0.05/6 = 0.0083 and
130000832 = 2.825 [because not all values of df are listed in Table 12, we use df = 30,
the closest value to df(within) = 33]. Table 11.9.5 summarizes the collection of in-
tervals in a manner similar to the Fisher LSD intervals in Table 11.9.3.

Table 11.9.5 Intermediate computations and experimentwise 95% (99.17% comparisonwise) Bonferroni
intervals comparing belowground biomass under different oyster density conditions

Comparison Ay =YV — W SEDab 130002566 X SE Dy Lower 99.17% Upper 99.17%
None-low 1.68 6.828 13.891 -17.6 21.0
None-intermediate 6.48 7.221 14.690 —13.9 26.9
None-high 19.81 6.828 13.891 0.5 39.1
Low-intermediate 4.80 7.049 14.341 —-151 24.7
Low-high 18.13 6.646 13.520 —0.6 36.9
Intermediate-high 13.33 7.049 14.341 —6.6 332

“Intervals not containing zero (i.e., where there is a statistically significant difference between the group means) are in italics.
Note the first two columns (d,;, and SE ) are identical to those presented in Table 11.9.3.

Using the method of underlining to visualize the comparisons, we have

High Intermediate Low None
a

b

The underlines indicate that the only significant difference in mean belowground
seagrass biomass is between the high oyster density and no oyster conditions. A
summary of the results is presented in Table 11.9.6. ]

Table 11.9.6 Belowground seagrass biomass (g/m?) for different levels of
oyster density

Opyster density
None Low Intermediate High
Mean 34.8° 33.12P 28.3%0 15.0°
SD 134 17.4 171 11.0
n 9 10 8 10

“Groups sharing a common superscript have means that are not statistically significantly
different based on Bonferroni comparisons with «,,, = 0.05.




472 Chapter 11 Comparing the Means of Many Independent Samples

Figure 11.9.2 R software
output presenting
experimentwise 95% Tukey
HSD intervals for the
oyster and seagrass
example

Note that the Fisher LSD intervals and the Bonferroni intervals are not identical
(the Bonferroni are wider due to the smaller value of «.,,). Additionally, the conclu-
sions differ as well. The Fisher LSD intervals indicate that there is evidence that the
low and high oyster density conditions have different population means, while the
Bonferroni intervals do not indicate a difference. This is because the Bonferroni in-
tervals are less powerful and thus more conservative than the Fisher intervals. Un-
like the Fisher intervals, the Bonferroni intervals are guaranteed to have a,,, less
than or equal to the desired experimentwise Type I error rate.

Unfortunately, the Bonferroni intervals are often overly conservative so that
the actual value of «,,, is much less than the desired experimentwise Type I error
rate, and thus too much power is sacrificed for Type I error protection. A more com-
plex procedure that (when sample sizes are equal) is able to achieve the desired ex-
perimentwise error exactly (and thus achieve higher power than Bonferroni) is
Tukey’s Honest Significant Difference.

Tukey’s Honest Significant Differnece

Tukey’s Honest Significant Difference (HSD) is very similar to the Fisher’s LSD
and Bonferonni adjusted intervals, but rather than using ¢ multipliers in the confi-
dence interval formulas, related values from a distribution known as the Studen-
tized range distribution are used. Most computer packages will display all Tukey
HSD pairwise intervals for any desired experimentwise Type I error rate, a,,,. As an
example, Figure 11.9.2 displays the Tukey output from the statistical software pack-
age R using our oyster and seagrass data. Note that in addition to the intervals, most
software also provides an “adjusted” P-value. Even though multiple comparisons
are being made, if these “adjusted” P-values are compared to «,,,, an overall exper-
imentwise Type I error rate of «,,, will still be maintained.

diff Twr upr p-adj
int-high 13.33 _—5.74 32.40 0.2515
Tow-high 18.13 0.15 36.11 0.0475
no-high  19.81 1.34 38.28 0.0318
Tow-int 4.80 —14.27 23.87 0.9037
zero-int 6.48 —13.06 26.02 0.8063
zero-low 1.68 —16.79 20.15 0.9947

The intervals in Figure 11.9.2 show that the conclusions drawn from the Tukey HSD
intervals match those from the Fisher LSD intervals: the high and low oyster densi-
ty as well as the high and no oyster density means differ significantly. The endpoints
of the experimentwise 95% Tukey HSD intervals are, however, different from both
the Fisher LSD and Bonferroni intervals.

Conditions for Validity

All three multiple comparison procedures as described require the same standard
ANOVA conditions given in Section 11.5. In addition, the validity conditions for
Fisher’s LSD intervals also require that the procedure not be used unless the global
null hypothesis of all means being equal is rejected. In contrast, Tukey’s HSD and
Bonferroni intervals do not require that the global F test be performed a priori
(though the computation of s,40leq is still needed). To exactly achieve the desired ex-
perimentwise Type I error rate, Tukey’s HSD requires that all samples be the same
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size. If the sample sizes are unequal, the actual error rate will be somewhat less than
the nominal rate resulting in a loss of power.

An advantage of the Bonferroni method is that it is widely applicable and can
easily be generalized to situations beyond ANOVA. One such example appears in

the exercises.

Exercises 11.9.1-11.9.8

11.9.1 A botanist used a completely randomized design
to allocate 45 individually potted eggplant plants to five
different soil treatments. The observed variable was the
total plant dry weight without roots (gm) after 31 days of
growth. The treatment means were as shown in the fol-
lowing table.?? The MS(within) was 0.2246. Use Fisher’s
LSD intervals to compare all pairs of means at
Ay = 0.05. Present your results in a summary table simi-
lar to Table 11.9.4. (Hint: Take note that all sample sizes
are equal; thus the calculated margin of error need only
be calculated once for all comparisons. There is a total of
10 comparisons possible).

TREATMENT A B C D E
Mean 437 476 370 541 538
n 9 9 9 9 9

11.9.2 Repeat Exercise 11.9.1, but use Bonferroni inter-
vals with «,,, = 0.05.

11.9.3 In a study of the dietary treatment of anemia in
cattle, researchers randomly divided 144 cows into four
treatment groups. Group A was a control group, and
groups B, C, and D received different regimens of dietary
supplementation with selenium. After a year of treat-
ment, blood samples were drawn and assayed for seleni-
um. The accompanying table shows the mean selenium
concentrations (pg/dl).*® The MS(within) from the
ANOVA was 2.071.

GROUP MEAN n
A 0.8 36
B 5.4 36
C 6.2 36
D 5.0 36

(a) Compute three Bonferroni-adjusted intervals com-
paring diets B, C, and D to the control (diet A) using
Qe = 0.05. (Note: This is an example of a situation
for which the Bonferroni comparisons may be pre-
ferred over the Tukey HSD comparisons since not all
comparisons are considered—we are only interested
in comparing the control to each of the other three
treatments.)

(b) In the context of the problem, interpret the Bonfer-
roni interval computed in part (a) that compares the
control (group A) to the group that is most different
from it.

11.9.4 Consider the experiment and data in Exercise
11.9.3. The experimentwise 95% Tukey HSD intervals are
displayed using the statistical software package R.

diff Twr upr
B-A 4.6 3.72 5.48
C-A 5.4 4.52 6.28
D-A 4.2 3.32 5.08
C-B 0.8 —0.08 1.68
D-B -0.4 —1.28 0.48
D-C -1.2 —-2.08 —0.32

(a) Using the preceding output to support your answer,
is there evidence that each of the groups/diets B, C,
and D, differs from the control, A?

(b) According to the preceding Tukey HSD intervals
and summary of the data in Exercise 11.9.3, diet C
yields the greatest mean selenium concentration
and is significantly higher than the control. If the
goal of the researchers is to find a diet that maxi-
mizes selenium concentration, is diet C the clear
choice? That is, should we rule out diet B, diet D, or
both? Refer to the Tukey HSD intervals to justify
your answer.

11.9.5 Ten treatments were compared for their effect on
the liver in mice. There were 13 animals in each treatment
group. The ANOVA gave MS(within) = 0.5842. The
mean liver weights are given in the table.’!

MEAN LIVER MEAN LIVER
TREATMENT  WEIGHT (GM) TREATMENT WEIGHT (GM)
1 2.59 6 2.84
2 2.28 7 229
3 2.34 8 2.45
4 2.07 9 2.76
5 2.40 10 237
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(a) Use Fisher LSD intervals to compare all pairs of
means with «,, = 0.05 and summarize the results in
a table similar to Table 11.9.4. [Time Saving Hints:
First note that the sample sizes are equal; hence the
same margin of error (1 X SEp, ) can be used for all
comparisons. Furthermore, since a summary table is
desired, the actual intervals need not be computed:
Simply check if |d,,| >t X SEp,. If it is, then the
computed interval would not contain zero, so the dif-
ference is significant. Finally, note that not all possi-
ble comparisons (there are 45) need to be checked:
when using the method of underlining to summarize
results, once a subarray of groups has been under-
lined all comparisons within the subarray are consid-
ered nonsignificant.]

(b) If Bonferroni’s method is used with «,,, = 0.05 in-
stead of Fisher’s LSD in part (a), are any pairs of
means significantly different?

11.9.6 Consider the data from Example 11.2.1 on the
weight gain of lambs. The MS(within) from the ANOVA
for these data was 23.333. The sample mean of diet 2 was
15 and of diet 1 was 11.

(a) Use the Bonferroni method to construct a 95% con-
fidence interval for the difference in population
means of these two diets (assuming that intervals will
also be computed for the other two possible compar-
isons as well).

(b) Suppose that the comparison in part (a) was the only
comparison of interest (i.e., one comparison rather
than three). How would the interval in part (a)
change? Would it be wider, narrower, or stay the
same? Explain.

11.9.7 As mentioned in this section, the Bonferroni pro-
cedure can be used in a variety of circumstances. Con-
sider the plover nesting example from Section 10.5,
which compares plover nest locations across three years.
The percentage distribution appears in the following
table.

YEAR
LOCATION 2004 2005 2006
Agricultural field (AF) 48.8 30.2 553
Prairie dog habitat (PD) 39.5 60.3 25.5
Grassland (G) 11.6 9.5 19.1
Total 99.9" 100.0 99.9"

“The sums of the 2004 and 2006 percentages differ
from 100% due to rounding.

The P-value for the chi-square test of these data was
found to be 0.007, indicating a significant difference in
the distribution of nesting locations across the three
years with « = 0.10. Considering reduced tables and
using chi-square tests to compare nesting distributions
for pairs of years, we obtain the following P-values:

YEARS COMPARED P-VALUE
2004 to 2005 0.100
2004 to 2006 0.307
2005 to 2006 0.001

Using a Bonferonni adjustment to achieve «,, = 0.10,
for which pair(s) of years is there evidence of a significant
difference in nesting location distributions? Indicate the
value of «,,, used.

11.9.8 Exercise 10.5.1 presented the following problem:
Patients with painful knee osteoarthritis were randomly
assigned in a clinical trial to one of five treatments: glu-
cosamine, chondroitin, both, placebo, or Celebrex, the
standard therapy. One outcome recorded was whether or
not each patient experienced substantial improvement in
pain or in ability to function. The data are given in the fol-
lowing table.

SUCCESSFUL OUTCOME
TREATMENT SAMPLE SIZE NUMBER  PERCENT
Glucosamine 317 192 60.6
Chondroitin 318 202 63.5
Both 317 208 65.6
Placebo 313 178 56.9
Celebrex 318 214 67.3

(a) Suppose we wished to compare only the success
rates of each of the treatments to the control (place-
bo) using four separate 2 X 2 chi-square tests. The P-
values for these comparisons follow. Using a
Bonferroni adjustment with «,,, = 0.05, which treat-
ments perform significantly different from the place-
bo? Indicate the value of «,, used.

TREATMENTS COMPARED TO PLACEBO P-VALUE
Glucosamine 0.346
Chondroitin 0.088
Both 0.024
Celebrex 0.007

(b) The P-value of the chi-square test that considers the
entire 5 X 2 table is 0.054, which provides insuffi-
cient evidence to demonstrate any difference among
the success rates of the five treatments using
a = 0.05. Explain why this result does not contradict
the results of part (a). [Hint: How many comparisons
are being considered by this chi-square test as com-
pared to the number of comparisons in part (a)? To
achieve «,,, = 0.05 using a Bonferroni adjustment,
how large would «,,, need to be? How large was it in
part (a)? How does conducting many tests with a
Bonferroni adjustment affect the power of each
test?]
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[1.10 Perspective

In Chapter 11 we have introduced some statistical issues that arise when analyzing
data from more than two samples and we have considered some classical methods
of analysis. In this section we review these issues and briefly mention some alterna-
tive methods of analysis.

Advantages of Global Approach

Let us recapitulate the advantages of analyzing / independent samples by a global
approach rather than by viewing each pairwise comparison separately.

1. Multiple comparisons In Section 11.1 we saw that the use of repeated ¢ tests
can greatly inflate the overall risk of Type I error. Some control of Type I error
can be gained by the simple device of beginning the data analysis with a glob-
al F test. For more stringent control of Type I error, other multiple comparison
methods are available (e.g., Bonferroni and Tukey HSD) and are described in
optional Section 11.9. (Note that the problem of multiple comparisons is not
confined to an ANOVA setting.)

2. Use of structure in the treatments or groups Analysis of suitable combinations
of group means can be very useful in interpreting data. Many of the relevant
techniques are beyond the scope of this book. The discussion in optional
Sections 11.7 and 11.8 gave a hint of the possibilities. In Chapter 12 we will dis-
cuss some ideas that are applicable when the treatments themselves are quan-
titative (for instance, doses).

3. Useofapooled SD We have seen that pooling all of the within-sample variabil-
ity into a single pooled SD leads to a better estimate of the common population
SD and thus to a more precise analysis. This is particularly advantageous if the
individual sample sizes (7’s) are small, in which case the individual SD estimates
are quite imprecise. Of course, using a pooled SD is proper only if the popula-
tion SDs are equal. It sometimes happens that one cannot take advantage of
pooling the SDs because the assumption of equal population SDs is not tenable.
One approach that can be helpful in this case is to analyze a transformed vari-
able, such as log(Y); the SDs may be more nearly equal in the transformed scale.

Other Experimental Designs

The techniques of this chapter are valid only for independent samples. But the basic
idea—partitioning variability within and between treatments into interpretable
components—can be applied in many experimental designs. For instance, all the
techniques discussed in this chapter can be adapted (by suitable modification of the
SE calculation) to analysis of data from an experiment with more than two experi-
mental factors or situations for which all or some experimental factors are numeric
rather than categorical. These and related techniques belong to the large subject
called analysis of variance, of which we have discussed only a small part.

Nonparametric Approaches

There are k-sample analogs of the Wilcoxon-Mann-Whitney test and other non-
parametric tests (e.g., the Kruskal-Wallis test). These tests have the advantage of
not assuming underlying normal distributions. However, many of the advantages of
the parametric techniques—such as the use of linear combinations—do not easily
carry over to the nonparametric setting.
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Ranking and Selection

In some investigations the primary aim of the investigator is not to answer research
questions about the populations but simply to select one or several “best” popula-
tions. For instance, suppose 10 populations (stocks) of laying hens are available and
it is desired to select the one population with the highest egg-laying potential. The
investigator will select a random sample of n chickens from each stock and will ob-
serve for each chicken Y = total number of eggs laid in 500 days.*> One relevant
question is: How large should n be so that the stock that is actually best (has the
highest w) is likely to also appear best (have the highest Y)? This and similar ques-
tions are addressed by a branch of statistics called ranking and selection theory.

Supplementary Exercises 11.5.1-11.5.19

(Note: Exercises preceded by an asterisk refer to optional
sections.)

I1.S.1 Consider the research described in Exercise 11.4.6
in which 10 women in an aerobic exercise class, 10 women
in a modern dance class, and a control group of 9 women
were studied. One measurement made on each woman
was change in fat-free mass over the course of the 16-
week training period. Summary statistics are given in the
following table.® The ANOVA SS(between) is 2.465 and
the SS(within) is 50.133.

AEROBICS MODERN DANCE CONTROL
Mean 0.00 0.44 0.71
SD 1.31 1.17 1.68
n 10 10 9

(a) State in words, in the context of this problem, the null
hypothesis that is tested by the analysis of variance.

(b) Construct the ANOVA table and test the null hy-
pothesis. Let & = 0.05.

11.5.2 Refer to Exercise 11.S.1. The F test is based on cer-
tain conditions concerning the population distributions.
(a) State the conditions.

(b) The following dotplots show the raw data. Based on
these plots and on the information given in Exercise
11.S.1, does it appear that the F test conditions are
met? Why or why not?
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11.8.3 In a study of the eye disease retinitis pigmentosa
(RP), 211 patients were classified into four groups ac-
cording to the pattern of inheritance of their disease. Vi-
sual acuity (spherical refractive error, in diopters) was
measured for each eye, and the two values were then av-
eraged to give one observation per person. The accompa-
nying table shows the number of persons in each group
and the group mean refractive error.’> The ANOVA of
the 211 observations yields SS(between) = 129.49 and
SS(within) = 2,506.8. Construct the ANOVA table and
carry out the Ftest at & = 0.05.

NUMBER OF MEAN REFRACTIVE

GROUP PERSONS ERROR
Autosomal 27 +0.07
dominant RP

Autosomal 20 —0.83
recessive RP

Sex-linked RP 18 —3.30
Isolate RP 146 —-0.84
Total 211

11.5.4 (Continuation of Exercise 11.S.3) Another ap-
proach to the data analysis is to use the eye, rather than
the person, as the observational unit. For the 211 per-
sons there were 422 measurements of refractive error;
the accompanying table summarizes these measure-
ments. The ANOVA of the 422 observations yields
SS(between) = 258.97 and SS(within) = 5,143.9.

NUMBER OF MEAN REFRACTIVE

GROUP EYES ERROR
Autosomal 54 +0.07
dominant RP

Autosomal 40 —0.83
recessive RP

Sex-linked RP 36 —3.30
Isolate RP 292 —-0.84
Total 422




(a) Construct the ANOVA table and bracket the P-
value for the F test. Compare with the P-value ob-
tained in Exercise 11.S.3. Which of the two P-values
is of doubtful validity, and why?

(b) The mean refractive error for the sex-linked RP pa-
tients was —3.30. Calculate the standard error of this
mean two ways: (i) regarding the person as the ob-
servational unit and using spooleq from the ANOVA
of Exercise 11.S.3; (ii) regarding the eye as the obser-
vational unit and using spgoleq from the ANOVA of
this exercise. Which of these standard errors is of
doubtful validity, and why?

*11.8.5 In a study of the mutual effects of the air pollu-
tants ozone and sulfur dioxide, Blue Lake snap beans
were grown in open-top field chambers. Some chambers
were fumigated repeatedly with sulfur dioxide. The air
in some chambers was carbon filtered to remove ambi-
ent ozone. There were three chambers per treatment
combination, allocated at random. After one month of
treatment, total yield (kg) of bean pods was recorded
for each chamber, with results shown in the accompany-
ing table.’* For these data, SS(between) = 1.3538 and
SS(within) = 0.27513. Complete the ANOVA table and
carry out the F test at @« = 0.05.

OZONE ABSENT OZONE PRESENT
SULFUR DIOXIDE SULFUR DIOXIDE
ABSENT ~ PRESENT  ABSENT  PRESENT
1.52 1.49 1.15 0.65
1.85 1.55 1.30 0.76
1.39 1.21 1.57 0.69
Mean 1.587 1.417 1.340 0.700
SD 0.237 0.181 0.213 0.056

Prepare an interaction graph (like Figure 11.7.3).

*11.5.6 Consider the data from Exercise 11.S.5. For
these data, SS(ozone) = 0.696, SS(sulfur) = 0.492,
SS(interaction) = 0.166, and SS(within) = 0.275.

(a) Construct the ANOVA table.
(b) Carry out an F test for interactions; use & = 0.05.

(c) Test the null hypothesis that ozone has no effect on
yield. Use a = 0.05.

*11.5.7 Refer to Exercise 11.S.5. Define contrasts to
measure each effect specified, and calculate the value of
each contrast.

(a) The effect of sulfur dioxide in the absence of ozone
(b) The effect of sulfur dioxide in the presence of ozone
(c) The interaction between sulfur dioxide and ozone

*11.8.8 (Continuation of Exercises 11.5.6 and 11.5.7) For
the snap-bean data, use a ¢ test to test the null hypothesis of
no interaction against the alternative that sulfur dioxide is
more harmful in the presence of ozone than in its absence.
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Let @ = 0.05. How does this compare with the F test of Ex-
ercise 11.5.6(b) (which has a nondirectional alternative)?

*11.8.9 (Computer exercise) Refer to the snap-bean data
of Exercise 11.S.5. Apply a reciprocal transformation to the
data. That is, for each yield value Y, calculate Y’ = 1/Y.

(a) Calculate the ANOVA table for Y’ and carry out the
F test.

(b) It often happens that the SDs are more nearly equal
for transformed data than for the original data. Is
this true for the snap-bean data when a reciprocal
transformation is used?

(c) Make a normal probability plot of the residuals,
(¥ij — ¥i)- Does this plot support the condition that
the populations are normal?

*11.5.10 (Computer exercise—continuation of Exercises
11.88and 11.5.9) Repeat the test in Exercise 11.S.7 using Y’
instead of Y, and compare with the results of Exercise 11.S.7.

I1.S.11 Suppose a drug for treating high blood pressure
is to be compared to a standard blood pressure drug in a
study of humans.

(a) Describe an experimental design for a study that makes
use of blocking. Be careful to note which parts of the
design involve randomness and which parts do not.

(b) Can the experiment you described in part (a) involve
blinding? If so, explain how blinding could be used.

11.5.12 In a study of balloon angioplasty, patients with
coronary artery disease were randomly assigned to one of
four treatment groups: placebo, probucol (an experimen-
tal drug), multivitamins (a combination of beta carotene,
vitamin E, and vitamin C), or probucol combined with
multivitamins. Balloon angioplasty was performed on
each of the patients. Later, “minimal luminal diameter” (a
measurement of how well the angioplasty did in dilating
the artery) was recorded for each of the patients. Summa-
ry statistics are given in the following table.?

MULTI- PROBUCOL AND
PLACEBO PROBUCOL VITAMINS MULTIVITAMINS
n 62 58 54 56
Mean 1.43 1.79 1.40 1.54
SD 0.58 0.45 0.55 0.61

(a) Complete the ANOVA table and bracket the P-
value for the F test.

SOURCE DF SS MS F
Between treatments 5.4336 _
Within treatments

Total 229 73.9945

(b) If @ = 0.01, do you reject the null hypothesis of
equal population means? Why or why not?
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*11.5.13 Refer to Exercise 11.S.12. Define contrasts to
measure each effect specified, and calculate the value of
each contrast.

(a) The effect of probucol in the absence of multivitamins
(b) The effect of probucol in the presence of multivitamins
(c) The interaction between probucol and multivitamins

*11.5.14 Refer to Exercise 11.S.12. Construct a 95% con-
fidence interval (e, = 0.05) for the effect of probucol in
the absence of multivitamins. That is, construct a 95%
confidence interval for ppropucol = Mplacebo-

*11.5.15 Refer to Exercise 11.S.12. Assuming all possible
comparisons of group means will be computed, use the
Bonferroni method to construct a 95% confidence inter-
val for the effect of probucol in the absence of multivita-
mins. That is, construct a Bonferroni-adjusted 95%
(@ = 0.05) confidence interval for pyropucol — Mplacebo-

*11.5.16 Three college students collected several pill-
bugs from a woodpile and used them in an experiment in
which they measured the time, in seconds, that it took for
a bug to move 6 inches within an apparatus they had cre-
ated. There were three groups of bugs: one group was ex-
posured to strong light, for one group the stimulus was
moisture, and a third group served as a control. The data
are shown in the following table.>

LIGHT MOISTURE CONTROL
23 170 229
12 182 126
29 286 140
12 103 260
5 330 330
47 55 310
18 49 45
30 31 248
8 132 280
45 150 140
36 165 160
27 206 192
29 200 159
33 270 62
24 298 180
17 100 32
11 162 54
25 126 149
6 229 201
34 140 173
Mean 23.6 169.2 173.5
SD 12.3 83.5 86.0
n 20 20 20

Clearly the SDs show that the variability is not constant
between groups, so a transformation is needed. Taking
the natural logarithm of each observation results in the
following dotplots and summary statistics.
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Light Moisture Control
LIGHT MOISTURE CONTROL
Mean 2.99 4.98 4.99
SD 0.65 0.62 0.66

For the transformed data, the ANOVA SS(between) is
53.1103 and the SS(within) is 23.5669.

(a) State the null hypothesis in symbols.

(b) Construct the ANOVA table and test the null hy-
pothesis. Let « = 0.05.

(c) Calculate the pooled standard deviation, Spooled-

*11.5.17 Mountain climbers often experience several
symptoms when they reach high altitudes during their
climbs. Researchers studied the effects of exposure to
high altitude on human skeletal muscle tissue. They set
up a 2 X 2 factorial experiment in which subjects
trained for six weeks on a bicycle. The first factor was
whether subjects trained under hypoxic conditions (cor-
responding to an altitude of 3,850m) or normal condi-
tions. The second factor was whether subjects trained at
a high level of energy expenditure or at a low level
(25% less than the high level). There were either 7 or 8
subjects at each combination of factor levels. The ac-
companying table shows the results for the response
variable “percentage change in vascular endothelial
growth factor mRNA "3’

HYPOXIC NORMAL
ENERGY LOW LEVEL HIGH LEVEL LOW LEVEL HIGH LEVEL
Mean 117.7 173.2 95.1 114.6
No. of 7 7 8 8
patients

Prepare an interaction graph (like Figure 11.7.3).



*11.S.18 Consider the data from Exercise 11.S.17.
(a) Complete the following ANOVA table.

SOURCE DF SS MS  FRATIO
Between hypoxic 1 12126.5

and normal

Between energy level 1 10035.7 .
Interaction

within groups 26 56076.0 -
Total 29  80738.7

(b) Conduct a test for interactions. Use & = 0.05.

(c) Based on your conclusions in part (b), is it sensible to
examine the main effects of condition and of energy
level?

(d) Test the null hypothesis that energy level has no ef-
fect on the response. Use @ = 0.05.

(e) Test the null hypothesis that the effect on the re-
sponse of hypoxic training is the same as the effect
on the response of normal training. Use & = 0.05.

*11.S.19 In a study to examine the utility of using ammo-
nia gas to sanitize animal feeds, researchers inoculated
corn silage with a strain of Salmonella. Next, two petri
dishes of 5 g of contaminated feed were exposed to con-
centrated anhydrous ammonia gas and two control petri
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dishes of 5 g of contaminated feed were not treated with
the gas. This experiment was repeated twice, for a total of
three trials, as only two petri dishes could be placed in the
pressurized gas chamber at any given time. Twenty-four
hours after inoculation and gassing, the number of bacte-
rial colonies (colony forming units or cfu) on each dish
were counted. Because the data were highly skewed, the
log(cfu) was analyzed.*®
(a) Identify the blocking, treatment, and response vari-
ables in this problem.
(b) Complete the following ANOVA table for this
blocked analysis.

DF SS MS FRATIO
Between treatments 1 1.141 1.141 7.107
Between trials 2 3611 o -
Within groups 8 o _
Total 11 6.036

(c) Using the complete table from part (b), is there evi-
dence that the ammonia gas treatment affects the
contamination level (i.e., mean log cfu)? Use
a = 0.05.

(d) Do the preceding analysis and information allow you
to infer that ammonia reduces contamination? If not,
what other information would be necessary to make
such a claim?



