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COMPARING THE MEANS OF

MANY INDEPENDENT SAMPLES

Chapter

11
• discuss when and why an analysis of variance may

be conducted.
• develop the intuition behind the ANOVA model.
• demonstrate how ANOVA calculations are carried

out.
• describe and examine the conditions under which

ANOVA is valid.
• see how blocking is used and how to conduct ran-

domized blocks ANOVA.

• describe interactions and main effects in factorial
ANOVA models.

• construct contrasts and other linear combinations
of means.

• introduce and compare several methods for dealing
with multiple comparisons.

Objectives
In this chapter we study analysis of variance (ANOVA). We will

11.1 Introduction
In Chapter 7 we considered the comparison of two independent samples with re-
spect to a quantitative variable Y. The classical techniques for comparing the two
sample means and are the test and the confidence interval based on Student’s
t distribution. In the present chapter we consider the comparison of the means of I
independent samples, where I may be greater than 2. The following example illus-
trates an experiment with .

Sweet Corn When growing sweet corn, can organic methods be used successfully to
control harmful insects and limit their effect on the corn? In a study of this question
researchers compared the weights of ears of corn under five conditions in an exper-
iment in which sweet corn was grown using organic methods. In one plot of corn a
beneficial soil nematode was introduced. In a second plot a parasitic wasp was used.
A third plot was treated with both the nematode and the wasp. In a fourth plot a
bacterium was used. Finally, a fifth plot of corn acted as a control; no special treat-
ment was applied here. Thus, the treatments were

Treatment 1: Nematodes

Treatment 2: Wasps

Treatment 3: Nematodes and wasps

Treatment 4: Bacteria

Treatment 5: Control

Example
11.1.1

I = 5

Y2Y1
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Figure 11.1.1 Weights of
ears of corn receiving five
different treatments

Ears of corn were randomly sampled from each plot and weighed. The results are
given in Table 11.1.1 and plotted in Figure 11.1.1.1 Note that in addition to the dif-
ferences between the treatment means, there is also considerable variation within
each treatment group. �

We will discuss the classical method of analyzing data from I independent sam-
ples. The method is called an analysis of variance, or ANOVA. In applying analysis
of variance, the data are regarded as random samples from I populations. We will
denote the means of these populations as , , . . . , and the standard deviations
as s1,s2, . . . , sI.

mIm2m1

Table 11.1.1 Weights (ounces) of ears of sweet corn

Treatment

1 2 3 4 5

16.5 11.0 8.5 16.0 13.0

15.0 15.0 13.0 14.5 10.5

11.5 9.0 12.0 15.0 11.0

12.0 9.0 10.0 9.0 10.0

12.5 11.5 12.5 10.5 14.0

9.0 11.0 8.5 14.0 12.0

16.0 9.0 9.5 12.5 11.0

6.5 10.0 7.0 9.0 9.5

8.0 9.0 10.5 9.0 18.5

14.5 8.0 10.5 9.0 17.0

7.0 8.0 13.0 6.5 10.0

10.5 5.0 9.0 8.5 11.0

Mean 11.5 9.6 10.3 11.1 12.3

SD 3.5 2.4 2.0 3.1 2.9

n 12 12 12 12 12
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Why Not Repeated t Tests?

It is natural to wonder why the comparison of the means of I samples requires any
new methods. For instance, why not just use a two-sample t test on each pair of sam-
ples? There are three reasons why this is not a good idea.

1. The problem of multiple comparisons The most serious difficulty with a naive
“repeated t tests” procedure concerns Type I error:The probability of false rejec-
tion of a null hypothesis may be much higher than it appears to be. For instance,
suppose and consider the null hypothesis that all four population means
are equal ( ) versus the alternative hypothesis that the
four means are not all equal.* Among four means there are six possible pairs
to compare. The pairings are displayed in Figure 11.1.2. The six resulting
hypotheses are

H0 : m2 = m3 H0 : m2 = m4 H0 : m3 = m4

H0 : m1 = m2 H0 : m1 = m3 H0 : m1 = m4

H0:m1 = m2 = m3 = m4

I = 4

*In Section 11.2 we will elaborate more on the form of this alternative hypothesis.
†Table 11.1.2 was computed assuming that the sample sizes are large and equal and that the population distribu-
tions are normal with equal standard deviations.

Table 11.1.2 Overall risk of Type I error in
using repeated t tests at a = 0.05

I Overall risk

2 0.05

3 0.12

4 0.20

6 0.37

8 0.51

10 0.63

m1 m2 m3 m4

Figure 11.1.2 Comparing
four population means
requires six comparisons

Let’s consider the risk of a Type I error for testing our primary null hypothesis
that all four means are equal by conducting six separate t tests. If any of the six t
tests finds a significant difference between a pair of means, we would reject our
primary null hypothesis that all four means are equal. A Type I error would
occur if any of the six t tests found a significant difference between a pair of
means when in fact all four means are equal.Thus, using for each of the
individual t tests carries an overall risk of a Type I error that is greater than 5%.

Our intuition might suggest that the risk of an overall Type I error in the
preceding example should be (in each of six tests we
had a 5% chance of wrongly finding evidence for a difference), but this is not
the case. The computation of this overall Type I error rate is more complex.
Table 11.1.2 displays the overall risk of Type I error,† that is,

Overall Type I error that at least one of the t tests will re-
ject its null hypothesis, when in fact .m1 = m2 = m3 = Á = mI

risk = Probability

6 * 0.05 = 0.3 = 30%

a = 0.05
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If , then the overall risk is 0.05, as it should be, but with larger I the risk
increases rapidly; for it is 0.37. It is clear from Table 11.1.2 that the researcher
who uses repeated t tests is highly vulnerable to Type I error unless I is quite small.

The difficulties illustrated by Table 11.1.2 are due to multiple comparisons—
that is, many comparisons on the same set of data. These difficulties can be
reduced when the comparison of several groups is approached through ANOVA.

2. Estimation of the standard deviation. The ANOVA technique combines infor-
mation on variability from all the samples simultaneously. This global sharing
of information can yield improved precision in the analysis.

3. Structure in the groups. In many studies the logical structure of the treatments
or groups to be compared may inspire questions that cannot be answered by
simple pairwise comparisons. For example, we may wish to study the effects of
two experimental factors simultaneously.ANOVA can be used to analyze data
in such settings (see Sections 11.6, 11.7, and 11.8).

A Graphical Perspective on ANOVA

When data are analyzed by analysis of variance, the usual first step is to test the fol-
lowing global null hypothesis:

which asserts that all the population means are equal. A statistical test of H0 will be
described in Section 11.4. However, we will first consider analysis of variance from a
graphical perspective.

Consider the dotplots shown in Figure 11.1.3(a). These dotplots were generated
in a setting in which H0 is true. The sample means, which are shown as lines on the
graph, differ from one another only as a result of chance error. For the data shown
in Figure 11.1.3(b), H0 is false. The sample means are quite different—there is sub-
stantial variability between the group means, which provides evidence that the cor-
responding population means ( ) are not all equal. In this particular
case, it appears that m1 and m2 differ from m3 and m4.

m1, m2, m3, and m4

H0: m1 = m2 = m3 = Á = mI

I = 6
I = 2
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Figure 11.1.3 (a) H0 true,
(b) H0 false, with small SDs
for the groups

Figure 11.1.4 shows a situation that is less clear. In fact, H0 is false here—the
means in Figure 11.1.4 are identical to those in Figure 11.1.3(b). However, the indi-
vidual group standard deviations are quite large, which makes it hard to tell that the
population means differ.*

*Note the change in scale on the vertical axis in Figure 11.1.4.
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Figure 11.1.4 H0 false,
with large SDs for the
groups

We need to know how much inherent variability there is in the data before we
can judge whether a difference in sample means is fairly small and attributable to
chance or whether it is too large to be due to chance alone. As Figures 11.1.3 and
11.1.4 illustrate, in order to find compelling evidence for a difference in popula-
tion means, not only must there be (1) variation among the group means, but it
must be large relative to (2) the inherent variability in the groups. It is through
comparing the relative magnitudes of these two kinds of variability—this “analysis
of variance”—that we are able to make an inference about means.

A Look Ahead

If the global null hypothesis that is rejected, then the
data provide sufficient evidence to conclude that at least some of the m’s are un-
equal; the researcher would usually proceed to detailed comparisons to determine
the pattern of differences among the m’s. If there is a lack of evidence against the
global null hypothesis, then the researcher might choose to construct one or more
confidence intervals to characterize the lack of significant differences among
the m’s.

All the statistical procedures of this chapter—the test of the global null hy-
pothesis and various methods of making detailed comparisons among the
means—depend on the same basic calculations. These calculations are presented
in Section 11.2.

11.2 The Basic One-Way Analysis of Variance
The ANOVA model presented in Section 11.1 that compares the means of three or
more groups is called a one-way ANOVA.The term “one-way” refers to the fact that
there is one variable that defines the groups or treatments (e.g., in the sweet corn ex-
ample the treatments were based on the type of harmful insect/bacteria). Later in
this chapter we will examine other ANOVA models such as the randomized com-
plete block ANOVA (Section 11.6) and the two-way ANOVA model (Section 11.7),
which consider the impact of having more than one variable defining the groups or
how treatments are assigned to experimental units.

In this section we present the basic one-way ANOVA calculations that are used
to describe the data and to facilitate further analysis. In the previous section we
noted that if the between-group mean variability is large relative to within-group

m1 = m2 = m3 = Á = mI
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variability, we will take this as evidence against the null hypothesis that the popula-
tion means are all equal. Hence, the analysis of variance of I samples, or groups, be-
gins with the calculation of quantities that describe the variability of the data
between the groups and within the groups.* (For clarity, in this chapter we will often
refer to the samples as “groups” of observations.)

Notation

To describe several groups of quantitative observations, we will use two subscripts:
one to keep track of group membership and the other to keep track of observations
within the groups. Thus, we will denote observation j in group i as

Thus, the first observation in the first group is y11, the second observation in the first
group is y12, the third observation in the second group is y23, and so on.

We will also use the following notation:

The total number of observations is

Finally, the grand mean—the mean of all the observations—is

Equivalently we can express as a weighted average of the group means

The following example illustrates this notation.

Weight Gain of Lambs Table 11.2.1 shows the weight gains (in two weeks) of young
lambs on three different diets. (These data are fictitious, but are realistic in all re-
spects except for the fact that the group means are whole numbers.)2

The total number of observations is

n. = 3 + 5 + 4 = 12

Example
11.2.1

y =
a
I

i=1
niyi

a
I

i
ni

=
a
I

i=1
niyi

n.

y

=
a
I

i=1
a
ni

j=1
yij

n.
y

n. = a
I

i=1
ni

si = standard deviation for group i

yi = mean for group i

ni = number of observations in group i

I = number of groups

yij = observation j in group i

*Grammatically speaking, the word among should be used rather than between when referring to three or more
groups; however, we will use “between” because it more clearly suggests that the groups are being compared
against each other.
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and the total of all the observations is

The grand mean is

�

If the sample sizes (ni’s) are all equal, then the grand mean is just the ordinary av-
erage (i.e., mean) of the group means (the ’s); but if the sample sizes are unequal,
this is not the case. For instance, in Example 11.2.1 note that

Measuring Variation within Groups

A combined measure of variation within the I groups is the pooled standard devia-
tion spooled, often simply denoted as just s, which is computed as follows.*

11 + 15 + 12
3

Z 13

yi

y

y =
156
12

= 13 lb

a
I

i=1
a
ni

j=1
yij = 33 + 75 + 48 = 156 or, equivalently 3 * 11 + 5 * 15 + 4 * 12 = 156

Pooled Standard Deviation

spooled = s = c
a
I

i=1
(ni - 1)si

2

a
I

i=1
(ni - 1)

= Sa
I

i=1
(ni - 1)si

2

n. - I

*There is no ambiguity in this notation since si (i.e., s with a subscript) denotes an individual group sample standard
deviation.

Table 11.2.1 Weight gains of lambs (lb)*

Diet 1 Diet 2 Diet 3

8 9 15

16 16 10

9 21 17

11 6

18

ni 3 5 4

Sum = gnij=1 yij 33 75 48

Mean = yi 11.000 15.000 12.000

SD = si 4.359 4.950 4.967

*Extra digits are reported for accuracy of subsequent calculations.
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We call the pooled variance*

Examining the formula we can see that the pooled variance is a weighted average of
the group sample variances, and thus the pooled standard deviation can be very
loosely interpreted as a weighted average of the group standard deviations.

The following example illustrates the computation of the pooled standard devi-
ation, s.

Weight Gain of Lambs Table 11.2.1 shows the group sample sizes and standard devia-
tions for the lamb weight-gain data.The pooled variance and standard deviation are
calculated as

�

Observe that the pooled standard deviation, 4.831 lb, is a sensible representative
value for the three group standard deviations, 4.359, 4.950, and 4.967 lb. If we as-
sume that the population standard deviation of weight gains is the same for all three
diets, then we would estimate this common value to be 4.83 lb. This estimate de-
pends only on the variability within the groups and not on their mean values. Figure
11.2.1(a) displays the data from Table 11.2.1 while Figure 11.2.1(b) displays a modi-
fied version of the data for which 7 has been added to each Diet 2 observation and 5
has been subtracted from each Diet 3 observation. We see that while the group
means are different for these two data sets, the pooled standard deviation—the in-
herent variability in each group—is the same.

s = 123.336 = 4.831

s2 =
(3 - 1)4.3592 + (5 - 1)4.9502 + (4 - 1)4.9672

12 - 3
=

210.025
9

= 23.336

Example
11.2.2

spooled
2 = s2 =

a
I

i=1
(ni - 1)si

2

a
I

i=1
(ni - 1)

spooled
2 = s2

y1 ± s1 y1 ± s1

y2 ± s2

y *
2 ± s2

y3 ± s3

y *
3 ± s3

Diet 1 Diet 2
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Figure 11.2.1 Examining
within-group standard
deviations. Plot (a) displays
the weight gain data from
Table 11.2.1 with .
Plot (b) displays modified
data with the same
individual group standard
deviations, and thus the
same pooled standard
deviation s = 4.831

s = 4.831

*Recall from Chapter 2 that the variance is simply the standard deviation squared.

ANOVA Notation

While our preceding formulas use familiar notation and terms, we will find it con-
venient to decompose the pooled variance into parts and subsequently define new
terms to be used in the context of analysis of variance.
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Sum of Squares and df within Groups

df(within) = n. - I

SS(within) = a
I

i=1
(ni - 1)si

2

Their ratio is defined as the mean square within groups, or MS(within). Note that
MS(within) is just another name for the pooled variance.

Mean Square within Groups

MS(within) =
SS(within)
df(within)

Hence, the quantity MS(within) measures the variability within the groups.†

The following example illustrates the calculation of SS(within), df(within), and
MS(within).

Weight Gain of Lambs In Example 11.2.2 when computing the pooled variance, we
found

Thus, �

Variation between Groups

For two groups, the difference between the groups is simply described by ( ).
How can we describe between-group variability for more than two groups? One
naive idea is to simply compute the sample variance of the group means. The mean
square between groups, or MS(between) is motivated by this idea. In fact, were it
not for the ni in the numerator of the following expression (to adjust for the sample
sizes of the groups), the MS(between) would indeed be the sample variance of the
group means.

y1 - y2

SS(within) = 210.025,df(within) = 9,and MS(within) = 23.336.

s2 =
(3 - 1)4.3592 + (5 - 1)4.9502 + (4 - 1)4.9672

12 - 3
=

210.025
9

= 23.336

Example
11.2.3

Mean Square between Groups

MS(between) =
a
I

i=1
ni1yi - y22
I - 1

*A popular but less intuitive formula for SS(within) is given by .

†If there were only one group, with n observations, then df(within) would be and the SS(within) would be 

. MS(within) would then simply be , the sample variance.
(n - 1)s2

(n - 1)
= s2(n - 1)s2

n - 1

SS(within) = a
I

i=1
a
ni

j=1
1yij - yi22

The numerator of the pooled variance is known as the sum of squares within
groups, SS(within), while the denominator is known as the degrees of freedom
within groups, df(within).The formulas for these are displayed in the following box.*
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As with the measures used for the within-group variation, MS(within), it is conven-
ient to define the numerator of MS(between) as the sum of squares between groups
or SS(between) and the denominator as the degrees of freedom between groups or
df(between) so that

where SS(between) and df(between) are explicitly defined as follows.

MS(between) =
SS(between)
df(between)

Sum of Squares and df between Groups

 df(between) = I - 1

 SS(between) = a
I

i=1
ni1yi - y22

The following example illustrates these definitions.

Weight Gain of Lambs For the data of Example 11.2.1, the quantities that enter
SS(between) are shown in Table 11.2.2.

Example
11.2.4

From Table 11.2.2 we calculate

Since , we have

so that

�

The SS(between) and MS(between) measure the variability between the sam-
ples means of the groups. This variability is shown graphically in Figure 11.2.2.

A Fundamental Relationship of ANOVA

The name analysis of variance derives from a fundamental relationship involving
SS(between) and SS(within). Consider an individual observation yij . It is obviously
true that

This equation expresses the deviation of an observation from the grand mean as the
sum of two parts: a within-group deviation and a between-group deviation(yij - yi)

)y= (yij - yi) + (yi -yyij -

MS(between) =
36
2

= 18

df(between) = 3 - 1 = 2

I = 3

SS(between) = 3(11 - 13)2 + 5(15 - 13)2 + 4(12 - 13)2 = 36

Table 11.2.2 Calculation of SS(between) for lamb weight gains

Diet 1 Diet 2 Diet 3

Mean: yi 11 15 12

ni 3 5 4

Grand mean y = 13
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Figure 11.2.2 Measuring
the differences between
group means

. It is also true (but not at all obvious) that the analogous relationship holds
for the corresponding sums of squares; that is,

(11.2.1)

which, by rewriting each of the sums on the right-hand side can be expressed as

The quantity on the left-hand side of formula (11.2.1) is called the total sum of
squares, or SS(total):

= SS(within) + SS(between)

a
I

i=1
a
ni

j=1
1yij - y22 = a

I

i=1
(ni - 1)si

2 + a
I

i=1
ni1yi - y22

a
I

i=1
a
ni

j=1
1yij - y22 = a

I

i=1
a
ni

j=1
1yij - yi22 + a

I

i=1
a
ni

j=1
1yi - y22

(yi - y)

Definition of Total Sum of Squares

SS(total) = a
I

i=1
a
ni

j=1
1yij - y22

Note that SS(total) measures variability among all n observations in the I groups.
The relationship [formula (11.2.1)] can be written as

Relationship between Sums of Squares
SS(total) = SS(between) + SS(within)

The preceding fundamental relationship shows how the total variation in the 
data set can be analyzed, or broken down, into two interpretable components:
between-sample variation and within-sample variation. This partition is an analysis
of variance.



Section 11.2 The Basic One-Way Analysis of Variance 425

With this definition, the degrees of freedom add, just as the sums of squares do; that is,

Notice that, if we were to consider all observations as a single sample, then the
SS for that sample (that is, the numerator of the variance) would be SS(total) and
the associated df (that is, the denominator of the variance) would be df(total).

Consequently, is the standard deviation of the entire data set when group 

membership is ignored.
The following example illustrates the fundamental relationships between the

sums of squares and degrees of freedom.

Weight Gain of Lambs For the data of Table 11.2.1, we found ; we calculate
SS(total) as

For these data, we found that and . We verify
that

Also, we found that and . We verify that

�

The ANOVA Table

When working with the ANOVA quantities, it is customary to arrange them in a
table. The following example shows a typical format for the ANOVA table.

Weight Gain of Lambs Table 11.2.3 shows the ANOVA for the lamb weight-gain data.
Notice that the ANOVA table clearly shows the additivity of the sums of squares
and the degrees of freedom. �

Comment on terminology. While the terms “between-groups” and “within-groups”
are not technical terms, they are useful in describing and understanding the
ANOVA model. Computer software and other texts commonly refer to these
sources of variability as treatment (between groups) and error (within groups).

Example
11.2.6

df(total) = 12 - 1 = 11 = 9 + 2

df(between) = 2df(within) = 9

246 = 36 + 210

SS(within) = 210SS(between) = 36

= 246

+ C(15 - 13)2 + (10 - 13)2 + (17 - 13)2 + (6 - 13)2 D
+ C(9 - 13)2 + (16 - 13)2 + (21 - 13)2 + (11 - 13)2 + (18 - 13)2 D

= C(8 - 13)2 + (16 - 13)2 + (9 - 13)2 D
 SS(total) = a

I

i=1
a
ni

j=1
1yij - y22

y = 13Example
11.2.5

2SS(total)
df(total)

n.

n. - 1 = (n. - I) + (I - 1)

df(total) = df(within) + df(between)

The total degrees of freedom, or df(total), is defined as follows:

Total df
df(total) = n. - 1
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Table 11.2.3 ANOVA table for lamb 
weight gains

Source df SS MS

Between diets 2 36 18.00

Within diets 9 210 23.33

Total 11 246

Summary of Formulas

For convenient reference, we display in the box the definitional formulas for the
basic ANOVA quantities.

ANOVA Quantities with Formulas

Exercises 11.2.1–11.2.7

11.2.1 The accompanying table shows fictitious data for
three samples.

11.2.2 Proceed as in Exercise 11.2.1 for the following
data:

Source df SS (Sum of Squares) MS (Mean Square)

Between groups I - 1 a
I

i=1
ni1yi - y22 SS/df

Within groups n. - I a
I

i=1
(ni - 1)si

2 SS/df

Total n. - 1 a
I

i=1
a
nj

j=1
1yij - y22

SAMPLE
1 2 3

48 40 39
39 48 30

42 44 32

43 35

Mean 43.00 44.00 34.00
SD 3.74 4.00 3.92

SAMPLE
1 2 3

23 18 20
29 12 16

25 15 17

23 23

19

Mean 25.00 15.00 19.00
SD 2.83 3.00 3.16

(a) Compute SS(between) and SS(within).
(b) Compute SS(total), and verify the relationship

between SS(between), SS(within), and SS(total).
(c) Compute MS(between), MS(within), and spooled.

11.2.3 For the following data, and
.SS(total) = 338.769

SS(within) = 116
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(a) Complete the table.
(b) How many groups were there in the study?
(c) How many total observations were there in the

study?

11.2.7 Invent examples of data with

(a) and 

(b) and 

(c) For each example, use three samples, each of size 5.

SS(within) = 0SS(between) 7 0

SS(within) 7 0SS(between) = 0

SAMPLE
1 2 3

31 30 39

34 26 45

39 35 39

32 29 37

30

(a) Find SS(between).
(b) Compute MS(between), MS(within), and spooled.

11.2.4 The following ANOVA table is only partially
completed.

(a) Complete the table.
(b) How many groups were there in the study?
(c) How many total observations were there in the

study?

11.2.5 The following ANOVA table is only partially
completed.

(a) Complete the table.
(b) How many groups were there in the study?
(c) How many total observations were there in the study?

11.2.6 The following ANOVA table is only partially
completed.

SOURCE DF SS MS

Between groups 3 45
Within groups 12 337

Total 472

SOURCE DF SS MS

Between groups 4
Within groups 964

Total 53 1123

SOURCE DF SS MS

Between groups 258
Within groups 26

Total 29 898

11.3 The Analysis of Variance Model
In Section 11.2 we introduced the notation yij for the jth observation in group i. We
think of yij as a random observation from group i, where the population mean of
group i is μi. We use analysis of variance to investigate the null hypothesis that

. It can be helpful to think of ANOVA in terms of the following
model:

In this model, μ represents the grand population mean—the population mean when
all the groups are combined. If the null hypothesis is true, then μ is the common pop-
ulation mean. If the null hypothesis is false, then at least some of the μi’s differ from
the grand population mean of μ.

The term ti represents the effect of group i—that is, the difference between the
population mean for group i, μi, and the grand population mean, μ. (t is the Greek
letter “tau.”) Thus,

The null hypothesis

H0: m1 = m2 = Á = mI

ti = mi - m

yij = m + ti + eij

m1 = m2 = Á = mI
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is equivalent to

If H0 is false, then at least some of the groups differ from the others. If ti is positive,
then observations from group i tend to be greater than the overall average; if ti is
negative, then data from group i tend to be less than the overall average.

The term eij in the model represents random error associated with observation j
in group i. Thus, the model

can be stated in words as

We estimate the overall average, μ, with the grand mean of the data:

Likewise, we estimate the population average for group i with the sample average
for group i:

Since the group effect is

we estimate ti as

Finally, we estimate the random error, eij, for observation yij as

Putting these estimates together, we have

or

Note. Some authors use the terminology SS(error) for what we have called
SS(within). This is due to the fact that the within-groups component esti-
mates the random error term in the ANOVA model.

Weight Gain of Lambs For the data of Example 11.2.1, the estimate of the grand pop-
ulation mean is . The estimated group effects are

and

Thus, we estimate that Diet 2 increases weight gain by 2 lb on average (when com-
pared to the average of the three diets), Diet 1 decreases weight gain by an average
of 2 lb, and Diet 3 decreases weight gain by 1 lb, on average. �

tN3 = 12 - 13 = -1

tN2 = 15 - 13 = 2

tN1 = y1 - y = 11 - 13 = -2

mN = 13
Example

11.3.1

yij - yi

yij = mN + tN i + eN ij

yij = y + (yi - y) + (yij - yi)

eN ij = yij - yi

yi - ytNi =

mi - mti =

mN i = yi

mN = y

observation = overall average + group effect + random error

yij = m + ti + eij

H0: t1 = t2 = Á = tI = 0
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When we conduct an analysis of variance, we are comparing the sizes of the
sample group effects, the ’s, to the sizes of the random errors in the data, the ’s.
We can see that

and

11.4 The Global F Test
The global null hypothesis is

We consider testing H0 against the nondirectional (or omnidirectional) alternative
hypothesis

Note that H0 is compound (unless ), and so rejection of H0 does not specify
which μi’s are different. If we reject H0, then we conduct a further analysis to make
detailed comparisons among the μi’s. Testing the global null hypothesis may be
likened to looking at a microscope slide through a low-power lens to see if there is
anything on it; if we find something, we switch to a greater magnification to examine
its fine structure.

The F Distributions

The F distributions, named after the statistician and geneticist R. A. Fisher, are
probability distributions that are used in many kinds of statistical analysis. The form
of an F distribution depends on two parameters: the numerator degrees of freedom
and the denominator degrees of freedom. Figure 11.4.1 shows an F distribution
with numerator and denominator . Critical values for the F distri-
bution are given in Table 10 at the end of this book. Note that Table 10 occupies 10
pages, each page having a different value of the numerator df. As a specific exam-
ple, for numerator and denominator , we find in Table 10 that

; this value is shown in Figure 11.4.1.F(4, 20)0.05 = 2.87
df = 20df = 4

df = 20df = 4

I = 2

HA:Themi’s are not all equal

H0: m1 = m2 = Á = mI

SS(within) = a
I

i=1
a
ni

j=1
eN ij

2

SS(between) = a
I

i=1
ni Nti

2

eN ijtN i

0 2 4

F0.05

6 F

Figure 11.4.1 The F
distribution with
numerator and
denominator df = 20

df = 4
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The F Test

The F test is a classical test of the global null hypothesis. The test statistic, the F
statistic, is calculated as follows:

From the definitions of the mean squares (Section 11.2), it is clear that Fs will be
large if the discrepancies among the group means ( ’s) are large relative to the vari-
ability within the groups. Thus, large values of Fs tend to provide evidence against
H0—evidence for a difference among the group means.

To carry out the F test of the global null hypothesis, critical values are obtained
from an F distribution (Table 10) with

and

It can be shown that (when suitable conditions for validity are met) the null distri-
bution of Fs is an F distribution with df as given above.

The following example illustrates the global F test.

Weight Gain of Lambs For the lamb feeding experiment of Example 11.2.1, the global
null hypothesis and alternative can be stated verbally as

H0: Mean weight gain is the same on all three diets.

HA: Mean weight gain is not the same on all three diets.

or symbolically as

HA: The μi’s are not all equal

We saw in Figure 11.2.2 that the three sample means do not differ much when com-
pared to the variability within the groups, which is not very strong evidence against
H0. Let us confirm this visual impression by carrying out the F test at .
From the ANOVA table (Table 11.2.3) we find

The degrees of freedom can also be read from the ANOVA table as

From Table 10 we find , so that . Thus, there is a lack of
significant evidence against H0; there is insufficient evidence to conclude that
there is any difference among the diets with respect to population mean weight
gain. The observed differences in the mean gains in the samples can readily be at-
tributed to chance variation. Because this study was an experiment (as opposed to

P 7 0.20F(2, 9)0.20 = 1.93

Denominator df = 9

Numerator df = 2

Fs =
18.00
23.33

= 0.77

a = 0.05

H0: m1 = m2 = m3

Example
11.4.1

Denominator df = df(within)

Numerator df = df(between)

Yi

Fs =
MS(between)
MS(within)
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an observational study), we can even make a slightly stronger summary of the re-
sults: There is insufficient evidence to conclude that among these three diets, diet
affects weight gain. �

Relationship between F Test and t Test

Suppose only two groups are to be compared . Then one could test
against using either the F test or the t test. The t test from

Chapter 7 can be modified slightly by replacing each sample standard deviation by
spooled, as defined in Section 11.2, before calculating the standard error of 
It can be shown that the F test and this “pooled” t test are actually equivalent proce-
dures. The relationship between the test statistics is ; that is, the value of the F
statistic for any set of data is necessarily equal to the square of the value of the
(pooled) t statistic. The corresponding relationship between the critical values is

, , and so on. For example, suppose and .
Then the appropriate t distribution has , and 
whereas the F distribution has numerator and denominator

, so that ; note that . Because of
the equivalence of the tests, the application of the F test to compare the means of two
samples will always give exactly the same P-value as the pooled t test applied to the
same data.

(2.131)2 = 4.54F(1, 15)0.05 = 4.54df = n. - I = 15
df = I - 1 = 1

t15,0.025 = 2.131,df = n1 + n2 - 2 = 15
n2 = 7n1 = 10t0.005

2 = F0.01t0.025
2 = F0.05

ts
2 = Fs

(Y1 - Y2).

HA:m1 Z m2H0:m1 = m2

(I = 2)

Exercises 11.4.1–11.4.7

11.4.1 Monoamine oxidase (MAO) is an enzyme that is
thought to play a role in the regulation of behavior. To
see whether different categories of schizophrenic pa-
tients have different levels of MAO activity, researchers
collected blood specimens from 42 patients and meas-
ured the MAO activity in the platelets. The results are
summarized in the accompanying table. (Values are ex-
pressed as nmol benzylaldehyde product/108 platelets/
hour.)3 Calculations based on the raw data yielded

and .SS(within) = 418.25SS(between) = 136.12

(a) Dotplots of these data follow. Based on this graphi-
cal display, does it appear that the null hypothesis is
true? Why or why not?

(b) Construct the ANOVA table and test the global null
hypothesis at .

(c) Calculate the pooled standard deviation, spooled.
a = 0.05

11.4.2 It is thought that stress may increase susceptibil-
ity to illness through suppression of the immune sys-
tem. In an experiment to investigate this theory, 48 rats
were randomly allocated to four treatment groups: no
stress, mild stress, moderate stress, and high stress. The
stress conditions involved various amounts of restraint
and electric shock. The concentration of lymphocytes

in the peripheral blood was measured
for each rat with the results given in the accompanying
table.4 Calculations based on the raw data yielded

and .SS(within) = 340.24SS(between) = 89.036

(cells/ml * 10-6)
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I II
Diagnosis

III

MAO ACTIVITY
DIAGNOSIS MEAN SD NO. OF PATIENTS

Chronic undifferentiated
schizophrenic

9.81 3.62 18

Undifferentiated with
paranoid features

6.28 2.88 16

Paranoid schizophrenic 5.97 3.19 8
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(a) Construct the ANOVA table and test the global null
hypothesis at .

(b) Calculate the pooled standard deviation, spooled.

11.4.3 Human beta-endorphin (HBE) is a hormone se-
creted by the pituitary gland under conditions of stress.
An exercise physiologist measured the resting (un-
stressed) blood concentration of HBE in three groups of
men: 15 who had just entered a physical fitness program,
11 who had been jogging regularly for some time, and 10
sedentary people. The HBE levels (pg/ml) are shown in
the following table.5 Calculations based on the raw data
yielded and .SS(within) = 6,887.6SS(between) = 240.69

a = 0.05

(a) State the appropriate null hypothesis in words, in the
context of this setting.

(b) State the null hypothesis in symbols.
(c) Construct the ANOVA table and test the null hy-

pothesis. Let .
(d) Calculate the pooled standard deviation, spooled.

11.4.4 An experiment was conducted in which the antivi-
ral medication zanamivir was given to patients who had
the flu. The length of time until the alleviation of major
flu symptoms was measured for three groups: 85 patients
who were given inhaled zanamivir, 88 patients who were
given inhaled and intranasal zanamivir, and 89 patients
who were given a placebo. Summary statistics are given in
the following table.6 The ANOVA SS(between) is 53.67
and the SS(within) is 2034.52.

a = 0.05

(c) Construct the ANOVA table and test the null hy-
pothesis. Let .

(d) Calculate the pooled standard deviation, spooled.

11.4.5 A researcher collected daffodils from four sides of
a building and from an open area nearby. She wondered
whether the average stem length of a daffodil depends on
the side of the building on which it is growing. Summary
statistics are given in the following table.7 The ANOVA
SS(between) is 871.408 and the SS(within) is 3588.54.

a = 0.05

(a) Dotplots of these data follow. Based on the dotplots,
does it appear that the null hypothesis is true? Why
or why not?

(b) State the null hypothesis in symbols.

(c) Construct the ANOVA table and test the null hy-
pothesis. Let .a = 0.10

11.4.6 A researcher studied the flexibility of 10 women
in an aerobic exercise class, 10 women in a modern dance
class, and a control group of 9 women. One measurement
she made on each woman was spinal extension, which is a
measure of how far the woman could bend her back.
Measurements were made before and after a 16-week
training period. The change in spinal extension was
recorded for each woman. Summary statistics are given in
the following table.8 The ANOVA SS(between) is 7.04
and the SS(within) is 15.08.

FITNESS PROGRAM 
ENTRANTS JOGGERS SEDENTARY

Mean 38.7 35.7 42.5
SD 16.1 13.4 12.8

n 15 11 10

INHALED
ZANAMIVIR

INHALED AND 
INTRANASAL 
ZANAMIVIR PLACEBO

Mean 5.4 5.3 6.3
SD 2.7 2.8 2.9

n 85 88 89

NORTH EAST SOUTH WEST OPEN

Mean 41.4 43.8 46.5 43.2 35.5
SD 9.3 6.1 6.6 10.4 4.7

n 13 13 13 13 13

AEROBICS MODERN DANCE CONTROL

Mean -0.18 0.98 0.13
SD 0.80 0.86 0.57

n 10 10 9

NO 
STRESS

MILD
STRESS

MODERATE 
STRESS

HIGH
STRESS

yq 6.64 4.84 3.98 2.92
s 2.77 2.42 3.91 1.45

n 12 12 12 12

North East South West Open
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(a) State the appropriate null hypothesis in words, in the
context of this setting.

(b) State the null hypothesis in symbols.
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(a) Dotplots of these data were are shown below. Based
on the dotplots, does it appear that the null hypothe-
sis is true? Why or why not?

(b) State the null hypothesis in symbols.

(c) Construct the ANOVA table and test the null hy-
pothesis. Let .a = 0.01

Aerobics Modern Control
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SOURCE DF
SUMS OF 
SQUARES

MEAN
SQUARE F RATIO PROB

Group 2 76.8950 38.4475 0.40245 0.6801
Error 9 859.808 95.5342

Total 11 936.703

11.4.7 The following computer output is for an analysis
of variance in which yields (bu/acre) of different varieties
of oats were compared.9

(a) How many varieties (groups) were in the experi-
ment?

(b) State the conclusion of the ANOVA.

(c) What is the pooled standard deviation, spooled?

11.5 Applicability of Methods
Like all other methods of statistical inference, the calculations and interpretations
of ANOVA are based on certain conditions.

Standard Conditions

The ANOVA techniques described in this chapter, including the global F test, are
valid if the following conditions hold.

1. Design conditions

(a) It must be reasonable to regard the groups of observations as random
samples from their respective populations.

(b) The I samples must be independent of each other.
2. Population conditions The I population distributions must be (approximate-

ly) normal with equal standard deviations:

These conditions are extensions of the conditions given in Chapter 7 for the inde-
pendent-samples t test with the added condition that the standard deviations be
equal. The condition of normal populations with equal standard deviations is less
crucial if the sample sizes (ni) are large and approximately equal.

Verification of Conditions

The design conditions may be verified as for the independent-samples t test. To
check condition 1(a), one looks for biases or hierarchical structure in the collection
of the data. A completely randomized design assures independence of the samples

s1 = s2 = Á = sI
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[condition 1(b)]. If units have been allocated to treatment groups in a nonrandom
manner (e.g., by a randomized blocks design to be discussed in Section 11.6),
or if observations on the same experimental unit appear in different samples 
(e.g., for , paired data as seen in Chapter 9), then the samples are not 
independent.

As with the independent-samples t test, the population conditions can be roughly
checked from the data. To check normality, a separate histogram or normal proba-
bility plot can be made for each sample. Another option is to make a single his-
togram or normal probability plot of the deviations from all the samples
combined. In the context of analysis of variance we call these deviations from the
group means residuals. Thus, a residual measures how far a data value falls from its
respective group mean.

Equality of the population SDs is checked by comparing the sample SDs; one
useful trick is to plot the SDs against the means ( ’s) to check for a trend. Another
approach is to make a plot of the residuals against the means ( ’s). As a
rule of thumb, we would like the largest sample SD divided by the smallest sample
SD to be less than 2 or so. If this ratio is much larger than 2, then we cannot be con-
fident in the P-value from the ANOVA, particularly if the sample sizes are small
and unequal. In particular, if the sample sizes are unequal and the sample SD from
a small sample is quite a bit larger than the other SDs, then the P-value can be
quite inaccurate.

Weight Gain of Lambs Consider the lamb feeding experiment of Example 11.2.2.
Figure 11.2.1 (in Section 11.2) shows that the variability within groups is nearly
equal across the three diets: The three sample SDs are 4.36, 4.95, and 4.97. Figure
11.5.1 is a normal probability plot of the 12 residuals (3 from Diet 1, 5 from
Diet 2, and 4 from Diet 3). This plot is close to linear, which provides no evidence to
cast doubt on the normality condition. �

(yij - yi)

Example
11.5.1

yi(yij - yi)
yi

(yij - yi)

I = 2

−1.5 −1.0 −0.5 0
Normal score

0.5 1.0 1.5

6

4

2

0

−2

−4

−6

R
es

id
ua

l:
y i

j
−

y i

Figure 11.5.1 Normal
probability plot of residuals 

in weight-gain
data
(yij - yi)

Sweet Corn Consider the sweet corn data of Example 11.1.1. Figure 11.5.2(a) shows
the data with each group receiving its own plotting symbol. Using those same plot-
ting symbols for each group, Figure 11.5.2(b) displays the residuals plotted(yij - yi)

Example
11.5.2
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Figure 11.5.2 Plot of
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mean for the sweet corn
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Figure 11.5.3 Plot of
residuals versus sample
means for a fictitious data
set for which the standard
deviation increases with
the mean

against each group’s mean ( ) (also known as a fitted value in the context of
analysis of variance). This second graph shows that the variability (as measured vi-
sually by the vertical spread) does not appreciably change as the mean changes
(which is good—if the variability increased as the mean increased, then condition 2
would be violated). �

While one could look at a basic plot of the data, as in Figure 11.5.2(a), to visually in-
spect that the SDs are similar across all groups, plotting the data as in Figure 11.5.2(b)
provides some visual advantages. First, by examining the residuals (Figure 11.5.2(b))
and not the raw data (Figure 11.5.2(a)), one can scan the graph from left to right al-
lowing the eyes to more clearly compare the variability among the groups without
being distracted by the changing means. Furthermore, a common violation of the
equal SD requirement is that the group SDs grow with the means. To illustrate this
violation, consider the fictitious data graphed in Figure 11.5.3(a) consisting of five
treatment groups and seven observations per group. Clearly the variability is not the
same in all five groups.The plot of the residuals versus means in Figure 11.5.3(b) ex-
poses this problem more clearly and shows that the SD (represented by vertical
spread) increases with the mean. We often describe this as funnel or horn shape in
the residuals.

yi
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Sweet Corn Again considering the sweet corn data of Example 11.2.1, we examine
the normality of the groups through examination of the residuals. Figure 11.5.4 con-
tains a histogram and a normal probability plot of the 60 residuals . The
bell-shaped nature of plot (a) and linearity of plot (b) cast little doubt upon the nor-
mality condition. �

(yij - yi)

Example
11.5.3

Further Analysis

In addition to their relevance to the F test, the standard conditions underlie many
classical methods for further analysis of the data.

If the I populations have the same SD, then a pooled estimate of that SD from
the data is

from the ANOVA. This pooled standard deviation spooled is a better estimate than
any individual sample SD because spooled is based on more observations.

A simple way to see the advantage of spooled is to consider the standard error of
an individual sample mean, which can be calculated as

where n is the size of the individual sample. The df associated with this standard
error is df(within), which is the sum of the degrees of freedom of all the samples.
By contrast, if the individual SD were used in calculating , it would have only

df. When the SE is used for inference, larger df yield smaller critical values
(see Table 4), which in turn lead to improved power and narrower confidence
intervals.

In optional Sections 11.7 and 11.8 we will consider methods for detailed
analysis of the group means . Like the F test, these methods were
designed for independent samples from normal populations with equal standard
deviations.The methods use standard errors based on the pooled standard deviation
estimate spooled.

Y1,Y2, Á ,YI

(n - 1)
SEY

SEY =
spooled1n

spooled = 3MS(within)
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Exercises 11.5.1–11.5.2

11.5.1 Refer to the lymphocyte data of Exercise 11.4.2.
The global F test is based on certain conditions concern-
ing the population distributions.
(a) State the conditions.
(b) Which features of the data suggest that the condi-

tions may be doubtful in this case?

11.5.2 Patients with advanced cancers of the stomach,
bronchus, colon, ovary, or breast were treated with ascor-

bate. The purpose of the study was to determine if the
survival times differ with respect to the organ affected by
the cancer. The variable of interest is survival time (in
days).10 Here are parallel dotplots of the raw data.

An ANOVA was done after a square root transformation
was applied to the raw data. There were two (related)
reasons that the data were transformed. What were those
two reasons?
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11.6 One-Way Randomized Blocks Design
The completely randomized design makes no distinctions among the experimental
units. Often an experiment can be improved by a more refined approach, one that
takes advantage of known patterns of variability in the experimental units.

In a randomized blocks design, we first group the experimental units into sets,
or blocks, of relatively similar units and then we randomly allocate treatments with-
in each block. Here is an example.

Alfalfa and Acid Rain Researchers were interested in the effect that acid has on the
growth rate of alfalfa plants. They created three treatment groups in an experi-
ment: low acid, high acid, and control. The response variable in their experiment
was the height of the alfalfa plants in a Styrofoam cup after five days of growth.*
They had 5 cups for each of the 3 treatments, for a total of 15 observations. However,
the cups were arranged near a window and they wanted to account for the effect of
differing amounts of sunlight. Thus, they created 5 blocks—each block was a fixed

Example
11.6.1

*More precisely, the response variable was the average height of plants within a cup, so that the observational
unit was a cup, rather than individual plants.
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distance away from the window (block 1 being the closest through block 5, the
farthest). Within each block the three treatments were randomly assigned, as shown
in Figure 11.6.1.11

�

Example 11.6.1 is an illustration of a randomized blocks design. To carry out a ran-
domized blocks design, the experimenter creates or identifies suitable blocks of ex-
perimental units and then randomly assigns treatments within each block in such a
way that each treatment appears in each block.* In Example 11.6.1, the rows of cups
at each of the five distances from the window serve as blocks. In general, we create
blocks in order to reduce or eliminate variability caused by extraneous variables, so
that the precision of the experiment is increased. We want the experimental units
within a block to be homogenous; we want the extraneous variability to occur
between the blocks. Here are more examples of randomized blocks designs in bio-
logical experiments.

Blocking by Litter How does experience affect the anatomy of the brain? In a typical
experiment to study this question, young rats are placed in one of three environ-
ments for 80 days:

T1: Standard environment. The rat is housed with a single companion in a standard
lab cage.

T2: Enriched environment. The rat is housed with several companions in a large
cage, furnished with various playthings.

T3: Impoverished environment. The rat lives alone in a standard lab cage.

At the end of the 80-day experience, various anatomical measurements are made on
the rats’ brains.

Suppose a researcher plans to conduct the above experiment using 30 rats. To
minimize variation in response, all 30 animals will be male, of the same age and
strain. To reduce variation even further, the researcher can take advantage of the
similarity of animals from the same litter. In this approach, the researcher would ob-
tain three male rats from each of 10 litters. The three littermates from each litter
would be assigned at random: one to T1, one to T2, and one to T3.12

�

Another way to visualize the experimental design is in tabular form, as shown
in Table 11.6.1. Each “Y” in the table represents an observation on one rat. Using
the layout of Table 11.6.1, the experimenter can compare the responses of rats that
received different treatments but are in the same litter. Such comparisons are not
affected by any difference (genetic and other) that may exist between one litter
and another.

Example
11.6.2

*Strictly speaking, the design we discuss is termed a randomized complete blocks design because every treat-
ment appears in every block. In an incomplete blocks design, each block contains some, but not necessarily all, of
the treatments.
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Organization of blocks for alfalfa experiment

Figure 11.6.1 Design of
the alfalfa experiment
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Within-Subject Blocking (Pairing) A dermatologist is planning a study to compare two
medicated lotions for their effectiveness in treating acne.Twenty patients are to par-
ticipate in the study. Each patient will use lotion A on one side of his or her face and
lotion B on the other; the dermatologist will observe the improvement on each side
during a three-month period. For each patient, the side of the face to receive lotion
A is randomly selected; the other side receives lotion B. The bottles of medication
have coded labels so that neither the patient nor the physician knows which bottle
contains A and which contains B—that is, in addition to blocking, the experiment
also makes use of blinding.13 This example, with blocks of size 2, is an example of
pairing:The left side of the face is paired with the right side of the face.We have con-
sidered the analysis of paired data in Chapter 8. �

Blocking in an Agricultural Field Study When comparing several varieties of grain, an
agronomist will generally plant many field plots of each variety and measure the
yield of each plot. Differences in yields may reflect not only genuine differences
among the varieties, but also differences among the plots in soil fertility, pH, water-
holding capacity, and so on. Consequently, the spatial arrangement of the plots in
the field is important. An efficient way to use the available field area is to divide
the field into large regions—the blocks—and to subdivide each block into several
plots. Within each block the various varieties of grain are then randomly allocated
to the plots, with a separate randomization done for each block. For instance, sup-
pose we want to test four varieties of barley. Then each block would contain four
plots. The resulting randomized allocation might look like Figure 11.6.2, which is a
schematic map of the field. The “treatments” T1, T2, T3, and T4 are the four vari-
eties of barley. �

Example
11.6.4

Example
11.6.3

T1

T2

T3

T4

T2

T4

T3

T1

T3

T2

T1

T4

T1

T3

T4

T2

Block 4Block 2 Block 3Block 1

N

S

EW

Figure 11.6.2 Layout of
an agricultural randomized
blocks design

Table 11.6.1 Format for rat brain data

Treatment

T1 T2 T3

Litter 1 Y Y Y
Litter 2 Y Y Y
Litter 3 Y Y Y

. . . .

. . . .

. . . .
Litter 10 Y Y Y
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Creating the Blocks

As the preceding examples show, blocking is a way of organizing the inherent varia-
tion that exists among experimental units. Ideally, the blocking should be arranged
so as to increase the information available from the experiment. To achieve this
goal, the experimenter should try to create blocks that are as homogeneous within
themselves as possible, so that the inherent variation between experimental units be-
comes, as far as possible, variation between blocks rather than within blocks. This
principle was illustrated in the preceding examples (e.g., in Example 11.6.2, where
blocking by litter exploits the fact that littermates are more similar to each other
than to nonlittermates). The following is another illustration.

Agricultural Field Study For the barley experiment of Example 11.6.4, how would
agronomists determine the best arrangement or layout of blocks in a field? They
would design the blocks to take advantage of any prior knowledge they may have of
fertility patterns in the field. For instance, if they know that an east–west fertility
gradient exists in the field (perhaps the field slopes from east to west, with the result
that the west end has a thicker layer of good soil or receives better irrigation), then
they might choose blocks as in Figure 11.6.2; the layout maximizes soil differences
between the blocks and minimizes differences between plots within each block.
(But even if a field appears to be uniform, blocking is usually used in agronomic ex-
periments, because plots closer together in the field are generally more similar than
plots farther apart.) �

To add solidity to this example, let us look at a set of data from a randomized
blocks experiment on barley. Each entry in Table 11.6.2 shows the yield (bushels of
barley per acre) of a plot 3.5 ft wide by 80 ft long.14

Example
11.6.5

Table 11.6.2 Yield (lb) of barley

Block 1 Block 2 Block 3 Block 4 Variety mean

Variety 1 93.5 66.6 50.5 42.4 63.3

Variety 2 102.9 53.2 47.4 43.8 61.8

Variety 3 67.0 54.7 50.0 40.1 53.0

Variety 4 86.3 61.3 50.7 46.4 61.2

Block Mean 87.4 59.0 49.7 43.2

It appears from Table 11.6.2 that the yield potential of the blocks varies greatly; the
data indicate a definite fertility gradient from block 1 to block 4. Because of the
blocked design, comparison of the varieties is relatively unaffected by the fertility
gradient. Of course, there also appears to be substantial variation within blocks.
[You might find it an interesting exercise to peruse the data and ask yourself
whether the observed differences between varieties are large enough to conclude
that, for example, variety 1 is superior (in mean yield) to variety 3; use your intuition
rather than a formal statistical analysis. The truth is revealed in Note 14.]

The Randomization Procedure

Once the blocks have been created, the blocked allocation of experimental units is
straightforward: It is as if a mini-experiment is conducted within each block. Random-
ization is carried out for each block separately, as illustrated in the following example.
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Agricultural Field Study Consider the agricultural field experiment of Example 11.6.4.
In block 1, let us label the plots 1, 2, 3, 4, from north to south (see Figure 11.6.2); we
will allocate one plot to each variety. The allocation proceeds as for the completely
randomized design, by choosing plots at random from the four, and assigning the
first plot chosen to T1, the second to T2, and so on. For instance, using a computer to
randomly permute the numbers 1 through 4 (or even shuffled cards numbered 1
through 4) we might obtain the sequence 4, 3, 1, 2 which would lead to the following
treatment allocation.

Block 1

T1: Plot 4

T2: Plot 3

T3: Plot 1

T4: Plot 2

This is in fact the assignment shown in Figure 11.6.2 for block 1. We can then repeat
this procedure for blocks 2, 3, and so on. �

Analyzing Data from a Randomized Block Experiment

In the same way we cannot use a two-sample t test when data are paired, when an
experiment has been blocked, we no longer can use our ANOVA methods of
Section 11.4. Instead, we will use a randomized blocks ANOVA model.We will illus-
trate the concepts as we reconsider the alfalfa and acid rain experiment of Example
11.6.1 in which the researchers blocked the experiment based on rows of cups
placed parallel to a window so that each block has roughly the same light exposure.
The data are given in Table 11.6.3 and are graphed in Figure 11.6.3.

Example
11.6.6

Our usual ANOVA null hypothesis for comparing I populations or treatments is

Alfalfa and Acid Rain The null hypothesis for the alfalfa growth experiment is that
acid has no effect on five-day growth. (We can make a strong causal claim like this
because this was an experiment.) More directly, the null hypothesis is that the
mean five-day growth is the same for all three treatments (high acid, low acid, and
control).

�H0:m1 = m2 = m3

Example
11.6.7

H0:m1 = m2 = Á = mI

Table 11.6.3 Alfalfa plant height after five days (cm)

High acid Low acid Control Block mean

Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967

Treatment mean = yqi 0.910 1.130 1.768
n 5 5 5
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Figure 11.6.3 Dotplots of
the alfalfa growth data with
a summary of block and
treatment means

This hypothesis can be tested with an analysis of variance F test, but first we want to
remove the variability in the data that is due to differences between the blocks. To
do this, we extend the ANOVA model presented in Section 11.3 to the following
model:

In this model yijk is the kth observation when treatment i is applied in block j. (In
Example 11.6.1 there is only one observation for each treatment in each block, but
in general there might be more than one.) Here, as before, μ represents the grand
population mean and the term ti represents the effect of group i (that is, treatment i).
The new term in the model is bj, which represents the effect of the jth block.

Visualizing the Block Effects

To visualize how blocking affects our ANOVA, we can think of our model in a
slightly different way:

The left-hand side of the equation describes the data after treatment effects have
been removed. With our data we estimate this left-hand side as

That is, within each treatment group, the treatment mean is subtracted from each
data value.* We’ve seen this before—in the context of a one-way ANOVA (Section
11.2) we called these deviations or residuals. Figure 11.6.4 is a plot of the deviations
from the treatment means for the alfalfa data broken down by block. We can see
that there is still a lot of structure in the data: The mean deviations in blocks 1 and 2
are greater than zero while blocks 3, 4, and 5 are below zero (corresponding to
above average growth near the window and below average growth farther from the

yijk - tN i = yijk - yqi.

(yijk - ti) = m + bj + eijk

yijk = m + ti + bj + eijk

*Here we write rather than to distinguish the treatment means from the block means .y.jyqiyi.
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window). The fact that these mean deviations are not all zero is a consequence of
the variability due to the blocks. Soon we shall describe how to measure the vari-
ability of these mean deviations for the blocks through the mean squares for blocks,
or MS(blocks).

To visualize how accounting for this block-to-block variation improves our abil-
ity to detect treatment effects, consider the alfalfa and acid rain data graphed in
Figure 11.6.5. Figure 11.6.5(a) displays the growth data for each treatment group
and simply ignores the blocks entirely while Figure 11.6.5(b) displays the growth
data after adjusting for the estimated block effects.* While the variability among the

*To account for the blocking, the adjusted growth data on the y-axis for each treatment group is computed as
.y.jyijk -
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Figure 11.6.4 Deviations
from the treatment means
for the alfalfa growth data
by blocks
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Figure 11.6.5 Visualizing
the effect of blocking when
comparing mean growth
under the three acid
treatments in the alfalfa
experiment. Plot (a)
displays the raw growth
data while (b) displays the
growth data after adjusting
for the estimated block
effects. Treatment means
are indicated by horizontal
lines and within-group
standard deviations by
arrows
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treatment means is unchanged between the plots, we observe that the variability
within the treatment groups is much smaller after accounting for the blocks and thus
the differences among the treatments are more pronounced.

The One-Way Randomized Complete Block F Test

Recall that the ANOVA F test is a ratio that compares the variability among the
treatment means to the within-group variability.As seen in Figure 11.6.5, accounting
for the blocks has reduced the within-group variability and will thus increase the F
statistic value. We now briefly discuss the computations involved in computing the
ANOVA table for the randomized complete block F test.

In Section 11.2 for a one-way ANOVA, we discussed how the total sum of
squares, SS(total), is broken down into SS(between), which measures variability at-
tributed to differences among the treatment means, and SS(within), which measures
unexplained random variation in the data. For a randomized blocks experiment, we
write SS(treatments) rather than SS(between) to describe the variability between
treatment means to be clear that we’re measuring variability between treatments
and not blocks. For a randomized blocks experiment we also split the one-way
ANOVA SS(within) into two parts: SS(blocks), which measures variability among
the block means, and SS(within), which measures the remaining unexplained varia-
tion in the data. Thus, we have

Mean Squares between Blocks

MS(blocks) =
a
J

j=1
mj1y.j - y22
J - 1

One-way ANOVA: SS(total) = SS(within) + SS(between)

One-way ANOVA with blocks: SS(total) = SS(within) + SS(blocks) + SS(treatments)

Usually we are not interested in testing a hypothesis about the blocks, but
nonetheless we want to take into consideration the effect that blocking has on the
response variable. Refining the one-way ANOVA by calculating SS(blocks) ac-
complishes this goal and furthermore, if blocks are chosen wisely, can lead to more
powerful tests.

Computing the sums of squares is typically left to a computer and rarely per-
formed by hand. Nonetheless, the formulas are worth noting as they mathematically
reveal how the blocks are being accounted for.

The mean squares between blocks is calculated in a manner similar to our com-
putation of MS(between) from the one-way ANOVA of Section 11.2. Roughly
speaking, we compute a sort of weighted variance of the block means in which we
weight the differences between a block mean and the overall mean by the block
sample size. If we define the average of the observations in block j to be and we
let mj denote the number of observations in block j, then the mean squares due to
blocks is defined as follows:

y.j
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Analogous to our formulas in Section 11.2 we define SS(blocks) and df(blocks) as
the numerator and denominator of MS(blocks) as follows:

Sum of Squares and df between Blocks

 df(blocks) = J - 1

22y SS(blocks) = a
J

j=1
mj1y.j -

As noted previously, the blocking reduces MS(within). To compute MS(within) for
the randomized complete block experiment we compute

where SS(treatment) and SS(total) are computed as in Section 11.2. As sums of
squares are always nonnegative values, the preceding formula shows directly how
the blocks reduce the within-group variability.

Similarly, to compute df(within) for the randomized complete block experiment,
we have

Alfalfa and Acid Rain For the alfalfa growth data in Table 11.6.2, the total of all the
observations is and the grand mean is

We calculate

Since , we have

so that

We calculate

Since , we have

and

MS(blocks) =
2.441

4
= 0.610

df(blocks) = 5 - 1 = 4

J = 5

= 2.441

+ 3(1.967 - 1.269)2

+ 3(1.077 - 1.269)2 + 3(1.837 - 1.269)2

 SS(blocks) = 3(1.917 - 1.269)2 + 3(1.550 - 1.269)2

MS(treatments) =
1.986

2
= 0.993

df(treatments) = 3 - 1 = 2

I = 3

SS(treatments) = 5(0.910 - 1.269)2 + 5(1.130 - 1.269)2 + 5(1.768 - 1.269)2 = 1.986

=
19.04

15
= 1.269y

1.30 + 1.15 + Á + 0.80 = 19.04
Example

11.6.8

= n. - I - J + 1

= (n. - 1) - (I - 1) - (J - 1)

 df(within) = df(total) - df(treatment) - df(blocks)

SS(within) = SS(total) - SS(treatment) - SS(blocks)
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The total sum of squares is found as 
By subtraction, we compute SS(within):

Similarly, we compute df(within) as

which in this case gives us .

Thus, . �

The sums of squares, degrees of freedom, and resulting mean squares are collected
in an expanded ANOVA table, which includes a line for the effect of the blocks.

To test the null hypothesis, we calculate

and reject H0 if the P-value is too small.

Alfalfa and Acid Rain For the alfalfa growth data of Example 11.6.1, the ANOVA sum-
mary is given in Table 11.6.4.The F statistic is , with degrees of free-
dom 2 for the numerator and 8 for the denominator. From Table 10 we bracket the
P-value as . (Using a computer gives .) The
P-value is small, indicating that the differences between the three sample means are
greater than would be expected by chance alone. There is significant evidence that
acid affects the growth of alfalfa plants. (It is worth noting that if we ignore the blocks
and conduct an erroneous one-way ANOVA, we would find which
would not provide significant evidence for an acid effect at  ). �a = 0.05

P-value = 0.0842,

P-value = 0.03180.02 6 P-value 6 0.05

0.993/0.182 = 5.47
Example

11.6.9

Fs =
MS(treatments)

MS(within)

MS(within) =
1.452

8
= 0.182

14 - 2 - 4 = 8

df(within) = df(total) + df(treatments) + df(blocks)

= 5.879 - 1.986 - 2.441 = 1.452

 SS(within) = SS(total) - SS(treatments) - SS(blocks)

(1.30 - 1.269)2 + Á + (0.80 - 1.269)2 = 5.879.

Table 11.6.4 ANOVA table for alfalfa experiment

Source df SS MS F ratio

Between treatments 2 1.986 0.993 5.47

Between blocks 4 2.441 0.610

Within groups 8 1.452 0.182

Total 14 4.278

Exercises 11.6.1–11.6.10

(Note: In several of these exercises you are asked to pre-
pare a randomized allocation. For this purpose you can
use either Table 1, random digits from your calculator, or
a computer.)

11.6.1 In an experiment to compare six different fertiliz-
ers for tomatoes, 36 individually potted seedlings are to

be used, 6 to receive each fertilizer. The tomato plants
will be grown in a greenhouse, and the total yield of
tomatoes will be observed for each plant. The experi-
menter has decided to use a randomized blocks design:
The pots are to be arranged in six blocks of 6 plants each
on the greenhouse bench. Two possible arrangements of
the blocks are shown in the accompanying figure.
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Steam pipe

Arrangement II:

Arrangement I:

Steam pipe

One factor that affects tomato yield is temperature,
which cannot be held exactly constant throughout the
greenhouse. In fact, a temperature gradient across the
bench is likely. Heat for the greenhouse is provided by a
steam pipe that runs lengthwise under one edge of the
bench, and so the side of the bench near the steam pipe is
likely to be warmer.

(a) Which arrangement of blocks (I or II) is better?
Why?

(b) Prepare a randomized allocation of treatments to the
pots within each block. (Refer to Example 11.6.4 as a
guide; assume that the assignments of seedlings to
pots and of pots to positions within the block have
already been made.)

11.6.2 An experiment on vitamin supplements is to be
conducted on young piglets, using litters as blocks in a
randomized blocks design. There will be five treatments:
four types of supplement and a control. Thus, five piglets
from each litter will be used. The experiment will include
five litters. Prepare a randomized blocks allocation of
piglets to treatments. (Refer to Example 11.6.4 as a
guide.)

11.6.3 Refer to the vitamin experiment of Exercise
11.6.2. Suppose a colleague of the experimenter proposes
an alternative design: All pigs in a given litter are to re-
ceive the same treatment, with the five litters being ran-
domly allocated to the five treatments. He points out that

his proposal would save labor and greatly simplify the
record keeping. If you were the experimenter, how would
you reply to this proposal?

11.6.4 In a pharmacological experiment on eating be-
havior in rats, 18 rats are to be randomly allocated to
three treatment groups: T1, T2, and T3. While under ob-
servation, the animals will be kept in individual cages in
a rack. The rack has three tiers with six cages per tier. In
spite of efforts to keep the lighting uniform, the lighting
conditions vary somewhat from one tier to another (the
bottom tier is darkest), and the experimenter is con-
cerned about this because lighting is thought to influ-
ence eating behavior in rats. The following three plans
are proposed for allocating the rats to positions in the
rack (to be done after the allocation of rats to treatment
groups):

Plan I. Randomly allocate the 18 rats to the 18 posi-
tions in the rack.

Plan II. Put all T1 rats on the first tier, all T2 rats on
the second, and all T3 rats on the third tier.

Plan III. On each tier, put two T1 rats, two T2 rats,
and two T3 rats.

Put these three plans in order, from best to worst. Explain
your reasoning.

11.6.5 An experimenter is planning an agricultural field
experiment to compare the yields of 25 varieties of corn.
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She will use a randomized blocks design with six blocks;
thus, there will be 150 plots, and the yield of each plot
must be measured. The experimenter realizes that the
time required to harvest and weigh all the plots is so long
that rain might interrupt the operation. If rain should in-
tervene, there could be a yield difference between the
harvests before and after the rain. The experimenter is
considering the following plans.

Plan I. Harvest all plots of variety 1 first, all of variety
2 next, and so on.

Plan II. Harvest all plots of block 1 first, all of block 2
next, and so on.

Which plan is better? Why?

11.6.6 For an experiment to compare two methods of ar-
tificial insemination in cattle, the following cows are
available:

Heifers (14–15 months old): 8 animals

Young cows (2–3 years old): 8 animals

Mature cows (4–8 years old): 10 animals

The animals are to be randomly allocated to the two
treatment groups, using the three age groups as blocks.
Prepare a suitable allocation, randomly dividing each
stratum into two equal groups.

11.6.7 True or false (and say why): The primary reason
for using a randomized blocks design in an experiment is
to reduce bias.

11.6.8 In an experiment to understand the impact of
fish grazing on invertebrate populations in streams, re-
searchers established nine observation channels in
three streams (three channels per stream). Each of the
three channels within a stream received one of three
treatments: No fish were added, Galaxias fish were
added, or Trout fish were added. (The channels were
constructed with mesh to prevent fish from entering or
leaving.) Twelve days after establishing the channels,
the number of Deleatidium mayfly nymphs present in a
specified region in the center of the channel were
counted. The number of nymphs for each treatment in
each creek follows.15

(a) Identify the blocking, treatment (i.e., the explanatory
variable of interest), and response variables in this
study.

CREEK
A B C

Treatment No Fish 11 8 7

Galaxias 9 4 4

Trout 6 4 0

DF SUM SQ MEAN SQ F VALUE

Between groups 2 42.889 21.444 2.924
Within groups 6 44.000 7.333

Total 8 86.889

(b) In the context of this problem, explain to someone
who has never taken a statistics course how blocking
may help better identify treatment differences
should they exist.

11.6.9 (Continuation of 11.6.8)
(a) The accompanying table is an (improper) ANOVA

table for the data in Exercise 11.6.8. This analysis
does not account for the blocking that was per-
formed in the experiment. Based on this analysis,
is there evidence that fish affect the number of
mayfly nymphs present in the channels? Use

.a = 0.05

DF SUM SQ MEAN SQ F VALUE

Between groups 2 42.889 21.444 16.783

Between blocks 2 38.889 19.444 15.217

Within groups 4 5.111 1.278

Total 8 86.889

(b) The proper ANOVA table for the data, which ac-
counts for blocking, follows. Based on this proper
analysis, is there evidence that fish affect the num-
ber of mayfly nymphs present in the channels? Use

.a = 0.05

(c) Compute and compare spooled using the ANOVA
table from parts (a) and (b). Why is one estimate
larger than the other? What is spooled measuring in
part (a)? In part (b)?

11.6.10 Consider the experiment described in Exercise
11.6.8. In addition to measuring the number of mayfly
nymphs at the end of 12 days, stones of the same size were
removed from each channel and the algal ash free dry mass
(mg/cm2) was measured for each of nine stones. These
data produced , ,
and .
(a) Construct an ANOVA table similar to Table 11.6.4 to

summarize these data.

(b) Is there evidence that the presence or type of fish is
associated with the mean algal ash free dry mass in
the channels? Use 

(c) Can a causal conclusion be drawn from the analysis
performed in part (b) based on these data? If so,
what causal conclusion can be made? If not, explain
why no causal conclusion is appropriate.

a = 0.05.

SS(total) = 2.889
SS(within) = 0.444SS(blocks) = 0.889
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11.7 Two-Way ANOVA

Factorial ANOVA

In a typical analysis of variance application there is a single explanatory variable or
factor under study. For example, in the weight gain setting of Example 11.2.1, the
factor is “type of diet,” which takes on three levels: diet 1, diet 2, and diet 3. Howev-
er, some analysis of variance settings involves the simultaneous study of two or
more factors. The following is an example.

Growth of Soybeans A plant physiologist investigated the effect of mechanical stress
on the growth of soybean plants. Individually potted seedlings were randomly allo-
cated to four treatment groups of 13 seedlings each. Seedlings in two groups were
stressed by shaking for 20 minutes twice daily, while two control groups were not
stressed. Thus, the first factor in the experiment was presence or absence of stress,
with two levels: control or stress. Also, plants were grown in either low or moderate
light. Thus, the second factor was amount of light, with two levels: low light or mod-
erate light. This experiment is an example of a factorial experiment; it in-
cludes four treatments:

Treatment 1: Control, low light
Treatment 2: Stress, low light
Treatment 3: Control, moderate light
Treatment 4: Stress, moderate light

After 16 days of growth, the plants were harvested, and the total leaf area (cm2) of each
plant was measured.The results are given in Table 11.7.1 and plotted in Figure 11.7.1.16

2 *  2

Example
11.7.1

Table 11.7.1 Leaf area (cm2) of soybean plants

Treatment

Control,
low light

Stress,
low light

Control,
moderate light

Stress,
moderate light

264 235 314 283

200 188 320 312

225 195 310 291

268 205 340 259

215 212 299 216

241 214 268 201

232 182 345 267

256 215 271 326

229 272 285 241

288 163 309 291

253 230 337 269

288 255 282 282

230 202 273 257

Mean 245.3 212.9 304.1 268.8

SD 27.0 29.7 26.9 35.2

n 13 13 13 13
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Figure 11.7.1 Leaf area of
soybean plants receiving
four different treatments.
Group means indicated by
(–)

There is evidence in Figure 11.7.1 that stress reduces leaf area.This is true under low
light and under moderate light. Likewise, moderate light increases leaf area,
whether or not the seedlings are stressed. �

A model for this setting is

where yijk is the kth observation of level i of the first factor and level j of the second
factor. The term ti represents the effect of level i of the first factor (stress condition
in Example 11.7.1) and now the term bj represents the effect of level j of the second
factor (light condition in Example 11.7.1).

When studying two factors within a single experiment it helps to organize the
sample means in a table that reflects the structure of the experiment and to present
the means in a graph that features this structure.

Growth of Soybeans Table 11.7.2 summarizes the data of Example 11.7.1. For exam-
ple, when the first factor is at its first level (control) and the second factor is at its
first level (low light), the sample mean is . The format of this table per-
mits us easily to consider the two factors—stress condition and light condition—
separately and together. The last column shows the effect of light at each stress
level. The numbers in this column confirm the visual impression of Figure 11.7.1:
Moderate light increases average leaf area by roughly the same amount when the
seedlings are stressed as it does when they are not stressed. Likewise, the last row

shows that the effect of stress is roughly the same at each level
of light. �

(-32.4 versus -35.3)

y11 = 245.3

Example
11.7.2

yijk = m + ti + bj + eijk

Table 11.7.2 Mean leaf areas for soybean experiment

Light condition

Low light Moderate light Difference

Shaking Control 245.3 304.1 58.8

condition Stress 212.9 268.8 55.9

Difference -32.4 -35.3

If the joint influence of two factors is equal to the sum of their separate influences,
the two factors are said to be additive in their effects. For instance, consider the soy-
bean experiment of Example 11.7.1. If stress reduces mean leaf area by the same
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amount in either light condition, then the effect of stress (a negative effect in this
case) is added to the effect of light. To visualize this additivity of effects, consider
Figure 11.7.2, which shows the data with the four treatment means. The solid lines
connecting treatment means are almost parallel because the data display a pattern
of nearly perfect additivity.*

*The difference between the mean leaf area for stress under low light (212.9) and the mean leaf area for control
under low light of (245.3) is called the simple effect of shaking under low light.Thus, the simple effect of shaking
under low light is . Likewise, the simple effect of shaking under moderate light is

. A main effect is an average of simple effects. For example, the main effect of shaking is
. The main effect of light is .(58.8 + 55.9)/2 = 57.35(-32.4 + -35.3)/2 = -33.85

268.8 - 304.1 = -35.3
212.9 - 245.3 = -32.4
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Figure 11.7.2 Data and
treatment means for
soybean experiment

When the effects of factors are additive we say that there is no interaction between
the factors. A graph that displays only the treatment means is often called an inter-
action graph. Figure 11.7.3, which is a summary version of Figure 11.7.2, is an inter-
action graph highlighting the effect of stress on mean leaf area for the two light
conditions.Analogous graphs can be made to draw the focus to comparing the effect
of light on mean leaf area for the two stress conditions.
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Figure 11.7.3 Interaction
graph for soybean
experiment

Sometimes the effect that one factor has on a response variable depends on the
level of a second factor. When this happens we say that the two factors interact in
their effect on the response. The following is an example.
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Iron Supplements in Milk-Based Fruit Beverages Iron and zinc fortification of milk-based
fruit drinks are common practice. To better understand the effects of drink fortifica-
tion on the cellular retention of iron, researchers conducted an experiment by forti-
fying milk-based fruit drinks with low and high levels of iron (Fe) and zinc (Zn).The
drinks were digested in a simulated gastrointestinal tract and cellular iron retention
was measured (�g Fe/mg cell protein). Table 11.7.3 summarizes the data, which in-
cluded eight observations for each combination of Fe and Zn supplementation lev-
els.17 Figure 11.7.4 is an interaction graph showing the four means. Note that when
the Zn supplementation level is low, the effect of the Fe supplementation on cellular
retention is much smaller than when the Zn supplementation level is high (i.e., the
slopes of the two lines differ—the lines are not parallel). Thus, the effect of Fe sup-
plementation on mean cellular retention depends on the amount of Zn supplemen-
tation used. We say that Fe and Zn interact in their effects on cellular retention. �

Example
11.7.3

When we suspect that two factors interact in an ANOVA setting, we can extend
our model by adding an interaction term:

Here the term gij is the effect of the interaction between level i of the first factor and
level j of the second factor. As before, if there are total observations, then

. If there are I levels of the first factor, then it has degrees
of freedom. Likewise, if there are J levels of the second factor, then it has de-
grees of freedom. There are interaction degrees of freedom.
With I levels of the first factor and J levels of the second factor there are IJ treat-
ment combinations. Thus, .*df(within) = n. - IJ

(I - 1) * (J - 1)
J - 1

I - 1df(total) = n. - 1
n.

yijk = m + ti + bj + gij + eijk
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Figure 11.7.4 Interaction
graph for drink
supplementation experiment

Table 11.7.3 Mean iron retention (�g Fe/mg cell protein)
for drink supplement experiment

Zn Level

Lo Hi Difference

Fe Lo 0.707 0.215 -0.492

Level Hi 0.994 1.412 0.418

Difference 0.287 1.197

*This is analogous to the definition of for one-way ANOVA from Section 11.2. In each set-
ting number of .observations - number of treatmentsdf(within) = total

df(within) = n. - I
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A null hypothesis of interest is that all interaction terms are zero:

To test this null hypothesis we calculate

and reject H0 if the P-value is too small.

Iron Supplements in Milk-Based Fruit Beverages Table 11.7.4 shows the analysis of vari-
ance results for the drink supplement experiment of Example 11.7.3. This table in-
cludes a line for the interaction term.* There were eight observations at each
combination of Fe and Ze supplementation level; thus and .
In this example , so .
We can find df(within) by subtraction: . (This
agrees with the formula .)

To test whether Fe and Zn supplementation levels interact we use the F ratio
, which has degrees of freedom 1 for the numerator and 28

for the denominator. From Table 10 we bracket the P-value as .
The P-value is extremely small, indicating that the interaction pattern seen in
Figure 11.7.4 is more pronounced than would be expected by chance alone. Thus,
we reject H0. �

P-value 6 0.0001
1.6555/0.0019 = 871.3

df(within) = n. - IJ = 32 - 2 * 2
df(within) = 31 - 1 - 1 - 1 = 28

df(Fe levels) = df(Zn levels) = df(interaction) = 1I = J = 2
df(total) = 31n. = 32

Example
11.7.4

Fs =
MS(interaction)

MS(within)

H0: g11 = g12 = Á = gIJ = 0

*The ANOVA formulas that are used to calculate the sum of squares due to interaction are rather messy and
aren’t presented here. In particular, it matters whether or not the design is “balanced.” The drink supplementa-
tion experiment is balanced in that there are eight observations in each of the four combinations of factor levels
shown in Table 11.7.3. However, unbalanced designs, which lead to complicated calculations and analyses, are
possible. We rely here on computer software to calculate the necessary sums of squares.

Table 11.7.4 ANOVA table for drink supplement experiment

Source df SS MS F ratio

Between Fe levels 1 4.4023 4.4023 2317.0

Between Zn levels 1 0.0109 0.0109 5.736

Interaction 1 1.6555 1.6555 871.3

Within groups 28 0.0523 0.0019

Total 31 6.1210

The concept of interaction occurs throughout biology. The terms “synergism” and
“antagonism” describe interactions between biological agents. The term “epistasis”
describes interaction between genes at two loci.

When interactions are present, as in Example 11.7.3, the main effects of factors
don’t have their usual interpretations. Regarding Example 11.7.3, it is difficult to
state the independent effect of Fe because the nature and magnitude of the effect
depends on the particular level of Zn supplementation. Because of this, we usually
test for the presence of interactions first. If interactions are present, as in the drink
supplementation example, then we often stop the analysis at this stage. If no evi-
dence for an interaction effect is found (that is, if we do not reject H0), then we pro-
ceed to testing the main effects of the individual factors. The following example
illustrates this process.
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Growth of Soybeans Table 11.7.5 is an analysis of variance table for the soybean
growth data of Example 11.7.1. The null hypothesis

is tested with the F ratio

Looking in Table 10 with degrees of freedom 1 and 12, we see that the P-value is
greater than 0.20; thus there is no significant evidence for an interaction and we do
not reject H0.

Since there is no evidence of interactions, we test the main effect of stress level.
Here the F ratio is

This is highly significant (i.e., the P-value is very small) and we reject H0.
Likewise, the test for the main effect of light levels has an F ratio of

Again, this is highly significant and we reject H0. �

Fs =
MS(between light levels)

MS(within)
=

42751.6
895.34

= 47.75

Fs =
MS(between stress levels)

MS(within)
=

14858.5
895.34

= 16.6

Fs =
MS(interaction)

MS(within)
=

26.3
895.34

= 0.029

H0: g11 = g12 = g21 = g22 = 0

Example
11.7.5

Interaction graphs can be used when there are more than two levels for a factor,
as in the next example.

Toads Researchers studied the effect that exposure to ultraviolet-B radiation
has on the survival of embryos of the western toad Bufo boreas. They con-
ducted an experiment in which several B. borea embryos were placed at one of
three water depths—10 cm, 50 cm, or 100 cm—and one of two radiation settings—
exposed to UV-B radiation or shielded. The response variable was the percent-
age of embryos surviving to hatching. Table 11.7.6 summarizes the data, which

Example
11.7.6

Table 11.7.5 ANOVA table for soybean growth experiment

Source df SS MS F ratio

Between stress levels 1 14858.5 14858.5 16.60

Between light levels 1 42751.6 42751.6 47.75

Interaction 1 26.3 26.3 0.029

Within groups 48 42976.3 895.34

Total 51 100612.7

Table 11.7.6 Percent embryos surviving for toads experiment

UV-B

Exposed Shielded Difference

Water 10 cm 0.425 0.759 0.334
depth 50 cm 0.729 0.748 0.019

100 cm 0.785 0.766 -0.019
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Figure 11.7.5 Interaction
graph for toad experiment

The topic of interactions is also discussed in Section 11.8.

Exercises 11.7.1–11.7.6

Table 11.7.7 ANOVA table for toad experiment

Source df SS MS F ratio

Between water depths 2 0.150676 0.075338 13.92

Between UV-B levels 1 0.074371 0.074371 13.74

Interaction 2 0.150185 0.075093 13.88

Within groups 18 0.097401 0.005411

Total 23 0.472633

included four observations at each combination of depth and UV-B exposure.
Figure 11.7.5 is an interaction graph showing the six means. The presence of
interactions here is readily apparent. Table 11.7.7 summarizes the analysis of
variance.18

�

11.7.1 A plant physiologist investigated the effect of
flooding on root metabolism in two tree species: flood-
tolerant river birch and the intolerant European birch.
Four seedlings of each species were flooded for one day
and four were used as controls. The concentration of
adenosine triphosphate (ATP) in the roots of each plant
was measured. The data (nmol ATP per mg tissue) are
shown in the table.19

RIVER BIRCH EUROPEAN BIRCH
FLOODED CONTROL FLOODED CONTROL

1.45 1.70 0.21 1.34

1.19 2.04 0.58 0.99

1.05 1.49 0.11 1.17

1.07 1.91 0.27 1.30

Mean 1.19 1.785 0.2925 1.20

Prepare an interaction graph (like Figure 11.7.3).
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11.7.2 Consider the data from Exercise 11.7.1. For these
data, ,

, , and 
.

(a) Construct the ANOVA table.
(b) Carry out an F test for interactions; use .
(c) Test the null hypothesis that species has no effect on

ATP concentration. Use .
(d) Assuming that each of the four populations has the

same standard deviation, use the data to calculate an
estimate of that standard deviation.

11.7.3 A completely randomized double-blind clinical
trial was conducted to compare two drugs, ticrynafen (T)
and hydrochlorothiazide (H), for effectiveness in treat-
ment of high blood pressure. Each drug was given at either
a low or a high dosage level for six weeks.The accompany-
ing table shows the results for the drop (baseline minus
final value) in systolic blood pressure (mm Hg).20

a = 0.01

a = 0.05

0.47438
SS(within) =SS(interaction) = 0.0976562.25751

SS(flooding) =SS(species of birch) = 2.19781

TICRYNAFEN (T) HYDROCHLOROTHIAZIDE (H)

LOW 
DOSE

HIGH
DOSE

LOW 
DOSE

HIGH
DOSE

Mean 13.9 17.1 15.8 17.5

No. of 
patients

53 57 55 58

Prepare an interaction graph (like Figure 11.7.3).

11.7.4 Consider the data from Exercise 11.7.3.The differ-
ence in response between T and H appears to be larger
for the low dose than for the high dose.

(a) Carry out an F test for interactions to assess whether
this pattern can be ascribed to chance variation.

NUTRIENT SOLUTION
STANDARD EXTRA NITROGEN

Low light 2.16 3.09

High light 3.26 4.48

Let . For these data 
and .

(b) Based on your results in part (a), is it sensible to exam-
ine and interpret the main effects of drug and of dose?

11.7.5 Consider the data from Exercise 11.7.3. For
these data, , ,

, and .

(a) Construct the ANOVA table.

(b) Carry out a test of the null hypothesis that the effects
of the two drugs (T and H) are equal. Let .

11.7.6 In a study of lettuce growth, 36 seedlings were ran-
domly allocated to receive either high or low light and to
be grown in either a standard nutrient solution or one
containing extra nitrogen. After 16 days of growth, the
lettuce plants were harvested and the dry weight of the
leaves was determined for each plant. The accompanying
table shows the mean leaf dry weight (gm) of the 9 plants
in each treatment group.21

a = 0.05

SS(within) = 30648.81SS(interaction) = 31.33
SS(dose) = 330.00SS(drug) = 69.22

SS(within) = 30648.81
SS(interaction) = 31.33a = 0.10

For these data, ,
, , and
.

(a) Construct the ANOVA table.
(b) Carry out an F test for interactions; use .
(c) Test the null hypothesis that nutrient solution has

no effect on weight. Use .a = 0.01

a = 0.05

SS(within) = 11.1392
SS(interaction) = 0.18923SS(light) = 13.95023
SS(nutrient solution) = 10.4006

11.8 Linear Combinations of Means (Optional)
In many studies, interesting questions can be addressed by considering linear combi-
nations of the group means. A linear combination L is a quantity of the form

where the m’s are multipliers of the ’s.

Linear Combinations for Adjustment

One use of linear combinations is to “adjust” for an extraneous variable, as illustrat-
ed by the following example.

Forced Vital Capacity One measure of lung function is forced vital capacity (FVC),
which is the maximal amount of air a person can expire in one breath. In a public
health survey, researchers measured FVC in a large sample of people.The results for
male ex-smokers, stratified by age, are shown in Table 11.8.1.22

Example
11.8.1

yqi

L = m1y1 + m2y2 + Á + mIyI
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Suppose it is desired to calculate a summary value for FVC in male ex-smokers.
One possibility would be simply to calculate the grand mean of the 481 observed
values, which is 4.56 liters. But the grand mean has a serious drawback: It cannot be
meaningfully compared with other populations that may have different age distri-
butions. For instance, suppose we were to compare ex-smokers with nonsmokers;
the observed difference in FVC would be distorted because ex-smokers as a group
are (not surprisingly) older than nonsmokers. A summary measure that does not
have this disadvantage is the “age-adjusted” mean, which is an estimate of the mean
FVC value in a reference population with a specified age distribution. To illustrate,
we will use the reference distribution in Table 11.8.2, which is (approximately) the
distribution for the entire U.S. population.23

Table 11.8.1 FVC in male ex-smokers

FVC (liters)

Age (years) n Mean SD

25–34 83 5.29 0.76

35–44 102 5.05 0.77

45–54 126 4.51 0.74

55–64 97 4.24 0.80

65–74 73 3.58 0.82

25–74 481 4.56

Table 11.8.2 Age distribution in reference population

Age Relative frequency

25–34 0.23

35–44 0.22

45–54 0.24

55–64 0.22
65–74 0.09

The “age-adjusted” mean FVC value is the following linear combination:

Note that the multipliers (m’s) are the relative frequencies in the reference popula-
tion. From Table 11.8.1, the value of L is

This value is an estimate of the mean FVC in an idealized population of people who
are biologically like male ex-smokers, but whose age distribution is that of the refer-
ence population. �

Contrasts

A linear combination whose multipliers (m’s) add to zero is called a contrast. The
following example shows how contrasts can be used to describe the results of an
experiment.

= 4.67 liters

L = (0.23)(5.29) + (0.22)(5.05) + (0.24)(4.51) + (0.22)(4.24) + (0.09)(3.58)

L = 0.23y1 + 0.22y2 + 0.24y3 + 0.22y4 + 0.09y5
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Growth of Soybeans Table 11.8.3 shows the treatment means and sample sizes for the
soybean growth experiment of Example 11.6.8. We can use contrasts to describe the
effects of stress in the two temperature conditions.

Example
11.8.2

(a) First, note that an ordinary pairwise difference is a contrast. For instance, to
measure the effect of stress in low light we can consider the contrast

For this contrast, the multipliers are , , , ; note
that they add to zero.

(b) To measure the effect of stress in moderate light we can consider the contrast

For this contrast, the multipliers are , , , .

(c) To measure the overall effect of stress, we can average the contrasts in parts
(a) and (b) to obtain the contrast

For this contrast, the multipliers are , . �

Standard Error of a Linear Combination

Each linear combination L is an estimate, based on the ’s, of the corresponding lin-
ear combination of the population means (μ’s). As a basis for statistical inference,
we need to consider the standard error of a linear combination, which is calculated
as follows.

yq

m4 = -1
2m3 = 1

2m2 = -1
2,m1 = 1

2,

=
1
2

 (32.4) +
1
2

 (35.3) = 33.85

L =
1
2

 (y1 - y2) +
1
2

 (y3 - y4)

m4 = -1m3 = 1m2 = 0m1 = 0

L = y3 - y4 = 304.1 - 268.8 = 35.3

m4 = 0m3 = 0m2 = -1m1 = 1

L = y1 - y2 = 245.3 - 212.9 = 32.4

Table 11.8.3 Soybean growth data

Treatment
Mean leaf 
area (cm2) n

1. Control, low light 245.3 13

2. Stress, low light 212.9 13

3. Control, moderate light 304.1 13

4. Stress, moderate light 268.8 13

Standard Error of L
The standard error of the linear combination

is

where from the ANOVA.spooled = 3MS(within)

SEL = spooledCaIi=1

mi
2

ni

L = m1y1 + m2y2 + Á + mIyI
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The SE can be written explicitly as

If all the sample sizes (ni) are equal, the SE can be written as

The following two examples illustrate the application of the standard error formula.

Forced Vital Capacity For the linear combination L defined in Example 11.8.1, we find
that

The ANOVA for these data yields .Thus, the standard
error of L is

�

Growth of Soybeans For the linear combination L defined in Example 11.8.2(a), we
find that

so that

�

Confidence Intervals

Linear combinations of means can be used for testing hypotheses and for constructing
confidence intervals. Critical values are obtained from Student’s t distribution with

from the ANOVA.* Confidence intervals are constructed using the familiar Stu-
dent’s t format. For instance, a 95% confidence interval is

The following example illustrates the construction of the confidence interval.

Growth of Soybeans Consider the contrast defined in Example 11.8.2(c):

L =
1
2

 (y1 - y2) +
1
2

 (y3 - y4)

Example
11.8.5

L ; t0.025SEL

df = df(within)

SEL = spooledC 2
13

a
I

i=1
mi

2 = (1)2 + (-1)2 + (0)2 + (0)2 = 2

Example
11.8.4

SEL = 0.7745310.0021789 = 0.0362

spooled = 10.59989 = 0.77453

= 0.0021789

a
I

i=1

mi
2

ni
=

0.232

83
+

0.222

102
+

0.242

126
+

0.222

97
+

0.092

73

Example
11.8.3

SEL = spooledC(m1
2 + m2

2 + Á + mI2)
n

= spooledC1
n a
I

i=1
mi

2

SEL = spooledCam1
2

n1
+
m2

2

n2
+ Á +

mI
2

nI
b

*This method of determining critical values does not take account of multiple comparisons. See Section 11.9.
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This contrast is an estimate of the quantity

which can be described as the true (population) effect of stress, averaged over the
light conditions. Let us construct a 95% confidence interval for this true difference.

We found in Example 11.8.2 that the value of L is

To calculate SEL, we first calculate

From the ANOVA, which is shown in Table 11.8.4, we find that 
; thus,

SEL = spooledCaIi=1

mi
2

ni
= 29.922C 1

13
= 8.299

29.922
spooled = 1895.34 =

a
I

i=1

mi
2

ni
=
A12 B2
13

+
A - 1

2 B2
13

+
A12 B2
13

+
A - 1

2 B2
13

=
1
13

L = 33.85

l =
1
2

 (m1 - m2) +
1
2

 (m3 - m4)

From Table 4 with , we find . The confidence
interval is

or (17.1, 50.6).
We are 95% confident that the effect of stress, averaged over the light condi-

tions, is to reduce the leaf area by an amount whose mean value is between 17.1 cm2

and 50.6 cm2. �

t Tests

To test the null hypothesis that the population value of a contrast is zero, the test
statistic is calculated as

and the t test is carried out in the usual way. The t test will be illustrated in Example
11.8.6.

ts =
L

SEL

 33.85 ; 16.77

 33.85 ; (2.021)(8.299)

t40,0.025 = 2.021df = 40 L 48

Table 11.8.4 ANOVA table for soybean growth experiment

Source df SS MS F ratio

Between stress depths 1 14858.5 14858.5 16.60

Between light levels 1 42751.6 42751.6 47.75

Interaction 1 26.3 26.3 0.029

Within groups 48 42976.3 895.34

Total 51 100613
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Contrasts to Assess Interaction

Sometimes an investigator wishes to study the separate and joint effects of two or
more factors on a response variable Y. In Section 11.7 the concept of interaction be-
tween two factors was introduced. Linear contrasts provide another way to study
such interactions. The following is an example.

Growth of Soybeans In the soybean growth experiment (Example 11.6.8 and
Example 11.8.2), the two factors of interest are stress condition and light level.Table
11.8.5 shows the treatment means, arranged in a new format that permits us easily to
consider the factors separately and together.

Example
11.8.6

At each light level, the mean effect of stress can be measured by a contrast:

Effect of stress in low light:
Effect of stress in moderate light:

Now consider the question: Is the reduction in leaf area due to stress the same in
both light conditions? One way to address this question is to compare ver-
sus ; the difference between these two values is a contrast:

This contrast L can be used as the basis for a confidence interval or a test of hypothe-
sis.We illustrate the test.The null hypothesis is

or, in words,

H0: The effect of stress is the same in the two light conditions.

For the preceding L, , and the standard error is

The test statistic is

From Table 4 with we find . The data provide virtually no evi-
dence that the effect of stress is different in the two light conditions.This is consistent
with the F test for interactions conducted in Example 11.7.5. �

t40,0.20 = 1.303df = 40

ts =
2.9
16.6

= 0.2

SEL = spooledCaIi=1

mi
2

ni
= spooledCa 4

13
b = 29.922C 4

13
= 16.6

a
I

i=1

mi
2

ni
=

4
13

H0: (m2 - m1) = (m4 - m3)

= -32.4 - (-35.3) = 2.9

L = (y2 - y1) - (y4 - y3)

(y4 - y3)
(y2 - y1)

y4 - y3 = 268.8 - 304.1 = -35.3
y2 - y1 = 212.9 - 245.3 = -32.4

Table 11.8.5 Mean leaf areas for soybean experiment

Light condition

Low light Moderate light Difference

Shaking Control 245.3 (1) 304.1 (3) 58.8

condition Stress 212.9 (2) 268.8 (4) 55.9

Difference -32.4 -35.3
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The statistical definition of interaction introduced in Section 11.7 and viewed
through the lens of contrasts here is rather specialized. It is defined in terms of the
observed variable rather than in terms of a biological mechanism. Further, interac-
tion as measured by a contrast is defined by differences between means. In some ap-
plications the biologist might feel that ratios of means are more meaningful or
relevant than differences. The following example shows that the two points of view
can lead to different answers.

Chromosomal Aberrations A research team investigated the separate and joint effects
in mice of exposure to high temperature (35 °C) and injection with the cancer drug
cyclophosphamide (CTX). A completely randomized design was used, with eight
mice in each treatment group. For each animal, the researchers measured the inci-
dence of a certain chromosomal aberration in the bone marrow; the result is ex-
pressed as the number of abnormal cells per 1,000 cells. The treatment means are
shown in Table 11.8.6.24

Example
11.8.7

Is the observed effect of CTX greater at room temperature or at high temperature?
The answer depends on whether “effect” is measured absolutely or relatively.

Measured as a difference, the effect of CTX is

Room temperature:

High temperature:

Thus, the absolute effect of CTX is greater at the high temperature. However, this
relationship is reversed if we express the effect of CTX as a ratio rather than as a
difference:

Room temperature:

High temperature:

At room temperature CTX produces almost a ninefold increase in chromoso-
mal aberrations, whereas at high temperature the increase is less than fourfold; thus,
in relative terms, the effect of CTX is much greater at room temperature. �

If the phenomenon under study is thought to be multiplicative rather than ad-
ditive, so that relative rather than absolute change is of primary interest, then ordi-
nary contrasts should not be used. One simple approach in this situation is to use a
logarithmic transformation—that is, to compute , and then analyze 
using contrasts. The motivation for this approach is that relations of constant
relative magnitude in the Y scale become relations of constant absolute magnitude
in the scale.Y¿

Y¿Yœ =  log (Y)

75.4
20.9

= 3.61

23.5
2.7

= 8.70

75.4 - 20.9 = 54.5

23.5 - 2.7 = 20.8

Table 11.8.6 Mean incidence of chromosomal aberrations
following various treatments

Injection

CTX None

Temperature Room 23.5 2.7

High 75.4 20.9
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Exercises 11.8.1–11.8.10

11.8.1 Refer to the FVC data of Example 11.8.1.
(a) Verify that the grand mean of all 481 FVC values is

4.56.
(b) Taking into account the age distribution among the 481

subjects and the age distribution in the U.S. population,
explain intuitively why the grand mean (4.56 liters) is
smaller than the age-adjusted mean (4.67 liters).

11.8.2 To see if there is any relationship between blood
pressure and childbearing, researchers examined data
from a large health survey. The following table shows the
data on systolic blood pressure (mm Hg) for random
samples from two populations of women: women who
had borne no children and women who had borne five or
more children. The pooled standard deviation from all
eight groups was .25spooled = 18mm Hg

Define linear combinations (that is, specify the multipli-
ers) to measure each of the following:
(a) The effect of flooding in river birch
(b) The effect of flooding in European birch
(c) The difference between river birch and European

birch with respect to the effect of flooding (that is,
the interaction between flooding and species)

11.8.4 (Continuation of Exercise 11.8.3)

(a) Use a t test to investigate whether flooding has the
same effect in river birch and in European birch. Use
a nondirectional alternative and let . (The
pooled standard deviation is .)

(b) If the sample sizes were rather than for
each group, but the means, standard deviations, and

remained the same, how would the result of
part (a) change?

11.8.5 (Continuation of Exercise 11.8.4)

Consider the null hypothesis that flooding has no effect on
ATP level in river birch.This hypothesis could be tested in
two ways: as a contrast (using the method of Section 11.8),
or with a two-sample t test (as in Exercise 7.2.11). Answer
the following questions; do not actually carry out the tests.
(a) In what way or ways do the two test procedures differ?

(b) In what way or ways do the conditions for validity of
the two procedures differ?

(c) One of the two procedures requires more conditions
for its validity, but if the conditions are met, then this
procedure has certain advantages over the other one.
What are these advantages?

11.8.6 Consider the data from Exercise 11.7.3 in which
the drugs ticrynafen (T) and hydrochlorothiazide (H) were
compared.The data are summarized in the following table.
The pooled standard deviation is .spooled = 11.83 mm Hg

spooled

n = 4n = 10
spooled = 0.199

a = 0.05

Carry out age adjustment, as directed, using the following
reference distribution, which is the approximate distribu-
tion for U.S. women:26

11.8.3 Refer to the ATP data of Exercise 11.7.1.The sam-
ple means and standard deviations are as follows:

NO CHILDREN
FIVE OR MORE 

CHILDREN

AGE

MEAN
BLOOD 

PRESSURE
NO. OF 

WOMEN

MEAN
BLOOD 

PRESSURE
NO. OF 

WOMEN

18–24 113 230 114 7

25–34 118 110 116 82

35–44 125 105 124 127

45–54 134 123 138 124

18–54 121 568 127 340

AGE RELATIVE FREQUENCY

18–24 0.17

25–34 0.29

35–44 0.31

45–54 0.23

RIVER BIRCH EUROPEAN BIRCH
FLOODED CONTROL FLOODED CONTROL

yq 1.19 1.78 0.29 1.20

s 0.18 0.24 0.20 0.16

(a) Calculate the age-adjusted mean blood pressure for
women with no children.

(b) Calculate the age-adjusted mean blood pressure for
women with five or more children.

(c) Calculate the difference between the values ob-
tained in parts (a) and (b). Explain intuitively why
the result is smaller than the unadjusted difference
of .

(d) Calculate the standard error of the value calculated
in part (a).

(e) Calculate the standard error of the value calculated
in part (c).

127 - 121 = 6  mg Hg

TICRYNAFEN (T) HYDROCHLOROTHIAZIDE (H)
LOW 
DOSE

HIGH
DOSE

LOW 
DOSE

HIGH
DOSE

Mean 13.9 17.1 15.8 17.5

No. of 
patients

53 57 55 58
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If the two drugs have equal effects on blood pressure,
then T might be preferable because it has fewer side
effects.
(a) Construct a 95% confidence interval for the differ-

ence between the drugs (with respect to mean blood
pressure reduction), averaged over the two dosage
levels.

(b) Interpret the confidence interval from part (a) in the
context of this setting.

11.8.7 Consider the lettuce growth experiment described
in Exercise 11.7.6. The accompanying table shows the
mean leaf dry weight (gm) of the nine plants in each
treatment group. MS(within) from the ANOVA was
0.3481.

NUTRIENT SOLUTION
STANDARD EXTRA NITROGEN

Low light 2.16 3.09

High light 3.26 4.48

Construct a 95% confidence interval for the effect of
extra nitrogen, averaged over the two light conditions.

11.8.8 Refer to the MAO data of Exercise 11.4.1.
(a) Define a contrast to compare the MAO activity for

schizophrenics without paranoid features versus the
average of the two types with paranoid features.

(b) Calculate the value of the contrast in part (a) and its
standard error.

(c) Apply a t test to the contrast in part (a). Let HA be
nondirectional and .

11.8.9 Are the brains of left-handed people anatomically
different? To investigate this question, a neuroscientist
conducted postmortem brain examinations in 42 people.
Each person had been evaluated before death for hand

a = 0.05

preference and categorized as consistently right-handed
(CRH) or mixed-handed (MH). The table shows the re-
sults on the area of the anterior half of the corpus callo-
sum (the structure that links the left and right
hemispheres of the brain).27 The MS(within) from the
ANOVA was 2,498.

AREA (MM2)

GROUP MEAN SD n

1. Males: MH 423 48 5

2. Males: CRH 367 49 7

3. Females: MH 377 63 10

4. Females: CRH 345 43 20

(a) The difference between MH and CRH is 56 mm2 for
males and 32 mm2 for females. Is this sufficient evi-
dence to conclude that the corresponding population
difference is greater for males than for females? Test
an appropriate hypothesis. (Use a nondirectional al-
ternative and let .)

(b) As an overall measure of the difference between
MH and CRH, one can consider the quantity

. Construct a 95% con-
fidence interval for this quantity. (This is a sex-ad-
justed comparison of MH and CRH, where the
reference population is 50% male and 50% female.)

11.8.10 Consider the daffodil data of Exercise 11.4.5.

(a) Define a contrast to compare the stem length for
daffodils from the open area versus the average of
the north, south, east and west sides of the building.

(b) Calculate the value of the contrast in part (a) and its
standard error.

(c) Apply a t test to the contrast in part (a). Let HA be
nondirectional and .a = 0.05

0.5(m1 - m2) + 0.5(m3 - m4)

a = 0.10

11.9 Multiple Comparisons (Optional)
After conducting a global F test, we may find that there is significant evidence for
a difference among the population means μ1, μ2, , μI. In this situation, we are
often interested in a detailed analysis of the sample means consid-
ering all pairwise comparisons. That is, we wish to test all possible pairwise
hypotheses:

and so on.

H0: m2 = m3

H0: m1 = m3

H0: m1 = m2

Y1,Y2, Á ,YI
Á
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*Although the term experimentwise contains the word experiment, this terminology pertains to both experi-
ments and observational studies.

We saw in Section 11.1 that using repeated t tests leads to an increased overall
risk of Type I error (e.g., finding evidence for a difference in population means
when, in fact, there is no difference). In fact, it was this increased risk of Type I
error that motivated the global F test in the first place. In this section we describe
three multiple comparison methods to control the overall risk of Type I error:
Bonferroni’s method, Fisher’s Least Significant Difference, and Tukey’s Honest
Significant Difference. First, however, we must examine the different types of Type I
error that arise when considering multiple comparisons.

Experimentwise versus Comparisonwise Error

Consider a study involving the comparison of four population means: μ1, μ2, μ3, and
μ4. As noted in Section 11.1, there are six possible comparisons:

When considering these six comparisons we can speak of the chance of a Type I
error for a particular comparison, say , called the comparisonwise Type I
error rate (acw), or we can speak of the chance of making a Type I error among
any of the six comparisons, called the experimentwise Type I error rate (aew).*
For example, Table 11.1.2 displays the experimentwise Type I error rates for com-
paring different numbers of groups when the comparisonwise Type I error rate is

.
While the relationship between acw and aew may be complex, it is always true

that

where k is the number of comparisons. Thus, if six independent comparisons were
made at the level, the experimentwise Type I error rate is at most

.

Fisher’s Least Significant Difference

In optional Section 11.8 we described a procedure for estimating linear contrasts.
Fisher’s Least Significant Difference (LSD) uses this procedure to produce all
pairwise confidence intervals for differences of population means using ,
the Type I error rate used in the ANOVA. Intervals that do not contain zero pro-
vide evidence for a significant difference between the compared population
means.

An example of the procedure follows.

Oysters and Seagrass In a study to investigate the effect of oyster density on sea-
grass biomass, researchers introduced oysters to thirty 1-m2 plots of healthy
seagrass. At the beginning of the study the seagrass was clipped short in all plots.
Next, 10 randomly chosen plots received a high density of oysters; 10, an interme-
diate density; and 10, a low density. As a control, an additional 10 randomly cho-
sen clipped 1-m2 plots received no oysters. After two weeks, the belowground

Example
11.9.1

acw = a

6 * 0.05 = 0.30
(aew)acw = 0.05

aew … k * acw

acw = 0.05

H0:m1 = m2

H0: m1 = m2 H0: m1 = m3 H0: m1 = m4 H0: m2 = m3 H0: m2 = m4 H0: m3 = m4
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seagrass biomass was measured in each plot (g/m2). Data from some plots are
missing. A summary of the data (Table 11.9.1) as well as the ANOVA table (Table
11.9.2) follow.28

Table 11.9.1 Belowground seagrass biomass (g/m2)

Oyster density

None (1) Low (2) Intermediate (3) High (4)

Mean 34.81 33.13 28.33 15.00

SD 13.44 17.36 17.11 10.97

n 9 10 8 10

The P-value for the ANOVA is 0.0243, indicating that there is significant evidence
of a difference among the biomass means under these experimental conditions.
Having evidence for a difference we proceed with comparisons.

Recall that for any linear contrast ,

where

Thus, to compare the no oyster condition (1) to the low oyster density condition (2)
we define so that as a linear contrast we have

and, since , we have

= 6.82

= 14.86 * C1
9

+
1
10

 SED12
= 14.86 * C12

9
+

(-1)2

10
+

02

8
+

02

10

spooled = 1220.94 = 14.86

= 34.81 - 33.13 = 1.68

= (1)(34.81) + (-1)(33.13) + (0)(28.33) + (0)(15.00)

d12 = 1y1 + (-1)y2 + 0y3 + 0y4

D12 = Y1 - Y2

spooled = 3MS(within)

SEL = spooledCaIi=1

mi
2

ni

L = m1y1 + m2y2 + Á + mIyI

Table 11.9.2 ANOVA summary of belowground seagrass biomass (g/m2)

df Sum of squares Mean squares F P-value

Between 3 2365.5 788.51 3.5688 0.0243

Within 33 7291.1 220.94

Total 36 9656.6
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A 95% confidence interval for the population mean difference in belowground
biomass for the no oyster condition compared to the low oyster density condition,

, is given by

We are 95% confident that the mean belowground biomass when there are no
oysters is between 12.21 g/m2 lower to 15.57 g/m2 higher than when there is a low
density of oysters. Since this interval contains zero, there is no evidence that the
mean belowground biomass differs for these two conditions.

Repeating this process for the remaining five comparisons produces the inter-
mediate computations and final intervals summarized in Table 11.9.3.

= (-12.21,15.57)

= 1.68 ; 13.89

d12 ; t33,0.025 * SED12
= 1.68 ; 2.0345 * 6.82

m1 - m2

From Table 11.9.3 we observe that the only comparisons showing significant dif-
ferences in mean biomass are the no- to high-oyster density and low- to high-oyster
densities. �

A general formula for computing a Fisher LSD interval for
( ) is given in the following box.ma - mb

100(1 - a)%

Table 11.9.3 Intermediate computations and 95% Fisher’s LSD intervals comparing belowground biomass under
different oyster density conditions*

Comparison dab = ya - yb 3(1/na) + (1/nb) SEDab = spooled * 3(1/na) + (1/nb) t33,0.025 * SEDab

None–low 1.68 0.459 6.828 13.891

None–intermediate 6.48 0.486 7.221 14.690

None–high 19.81 0.459 6.828 13.891

Low–intermediate 4.80 0.474 7.049 14.341

Low–high 18.13 0.447 6.646 13.520

Intermediate–high 13.33 0.474 7.049 14.341

Comparison Lower 95% Upper 95%

None–low -12.2 15.6

None–intermediate -8.2 21.2

None–high 5.9 33.7

Low–intermediate -9.5 19.1

Low–high 4.6 31.7

Intermediate–high -1.0 27.7
*Intervals not containing zero (i.e., there is a statistically significant difference between the group means) are in italics. Note that an 
interval will not contain zero whenever . (The value of was determined using a computer. Using
Table 4 we would obtain very similar results using the value listed for 30 degrees of freedom, .)t30,0.025 = 2.042

t33,0.025 = 2.0345|Dab| 7 t * SEDab
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Fisher LSD Interval for ( )

where

and

df = df(within)

spooled = 3MS(within)

SEDab = spooledC 1
na

+
1
nb

dab = ya - yb

dab ; tdf,a/2 * SEDab

ma - mb100(1 - a)%

How does Fisher’s LSD control the experimentwise Type I error rate? One
should use Fisher’s LSD comparisons only after rejecting the ANOVA global null
hypothesis that all population means are equal: . The
ANOVA global F test acts as a screening procedure for the multiple comparisons
and thus offers control over aew.

Displaying Results

The presentation of all six Fisher LSD intervals for the seagrass example in Table
11.9.3 is a useful working summary but is not suitable for effective communication
of results. To organize the results for presentation in a simple table we take the fol-
lowing steps.

Step 1 Array of group labels. Arrange the group labels in increasing order of their
means.

Step 2 Systematic comparison of means, underlining nonsignificant differences.

(a) Begin by examining the interval comparing the largest and smallest
means. If the interval contains zero, the difference in means is not sta-
tistically significant and a line is drawn under the array of group labels
to “connect” the groups with the largest and smallest means. If the
interval does not contain zero, proceed to the next step.

(b) Ignore the group with the smallest mean and compare the remaining
subarray of means. As in step (2a), if the interval contains zero,
the difference in means is not statistically significant and a line is drawn
under the array of group labels being compared to “connect” the
groups. Next consider the other subarray of means—the means
that remain if the group with the largest mean is ignored.Again, under-
line this subarray if the interval contains zero.

(c) Repeat step (2b) by successively comparing all subarrays of size ,
, and so on, until an interval is produced that contains zero or no

more comparisons are possible.
I - 3

I - 2

I - 1

I - 1

H0:m1 = m2 = Á = mI
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Important Notes: During this procedure, never make a comparison within any
subarray that has already been underlined; these group means are automatically
declared not statistically significantly different. Also, when underlining, use a sepa-
rate line for each step; never join a line to one that has already been drawn.

Step 3 Translate the underlines to a tabular summary. Create a summary table of
the data using superscript letters to indicate which groups are not statisti-
cally significantly different.

Oysters and Seagrass In this example we will follow the preceding procedure to dis-
play the oyster and seagrass Fisher’s LSD comparisons displayed in Table 11.9.3.

Step 1 We first arrange the labels in order of the means (shown in Table 11.9.1).

High Intermediate Low None

Step 2 We compare the groups with the smallest (high oyster density) and largest
(no oysters) means: . This interval does not con-
tain zero, so these means are significantly different and no underline is
made.* We now proceed to the next set (step 2b), the comparisons of subar-
rays of three means. First, we compare Intermediate to None:

This interval contains zero, so an underline is drawn as shown.

High Intermediate Low None

This underline indicates that these three groups do not have signifi-
cantly different means. We now compare the next subarray of three
means, High to Low: . This interval does not
contain zero, so no underlines are drawn. There is evidence for a differ-
ence in mean belowground biomass between the high and low oyster-
density conditions.

Having compared all subarrays of three means, we continue with subar-
rays of two means. The only subarray of two means not already connected
with an underline is the High–Intermediate comparison. This interval

contains zero, so an underline is drawn
as shown.

High Intermediate Low None

Step 3 Communicating these results, we give each line a letter and display these
letters as superscripts in our table of group means as shown below and
in Table 11.9.4. A graphical display is also possible and is displayed in
Figure 11.9.1.

High Intermediate Low None
a

b �

mIntermediate - mHigh = (-1.0,27.7)

mHigh - mLow = (4.6,31.7)

mNone - mIntermediate = (-8.2,21.2)

mNone - mHigh = (5.9,  33.7)

Example
11.9.2

*Intuitively, this interval should not contain zero since we have rejected the global F test null hypothesis, though
there are some instances where the results of our multiple comparison procedure and global F test may not
agree.
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The Bonferroni Method

The Bonferroni method is based on a very simple and general relationship:The prob-
ability that at least one of several events will occur cannot exceed the sum of the indi-
vidual probabilities. For instance, suppose we conduct six tests of hypotheses, each at

.Then the overall risk of Type I error aew—that is, the chance of rejecting at
least one of the six hypotheses when in fact all of them are true—cannot exceed

Turning this logic around, suppose an investigator plans to conduct six tests of hy-
potheses and wants the overall risk of Type I error not to exceed . A con-
servative approach is to conduct each of the separate tests at the significance level

; this is called a Bonferroni adjustment.
Note that the Bonferroni technique is very broadly applicable. The separate

tests may relate to different response variables, different subsets, and so on; some
may be t tests, some chi-square tests, and so on.

The Bonferroni approach can be used by a person reading a research report, if
the author has included explicit P-values. For instance, if the report contains six P-
values and the reader desires overall 5%-level protection against Type I error, then
the reader will not regard a P-value as sufficient evidence of an effect unless it is
smaller than .

A Bonferroni adjustment can also be made for confidence intervals. For in-
stance, suppose we wish to construct six confidence intervals and desire an overall
probability of 95% that all the intervals contain their respective parameters
( ). Then this can be accomplished by constructing each interval at confi-
dence level 99.17% (because and ).1 - 0.0083 = 0.99170.05/6 = 0.0083
aew = 0.05

acw = 0.0083

acw = 0.05/6 = 0.0083

aew = 0.05

0.01 + 0.01 + 0.01 + 0.01 + 0.01 + 0.01 = (6)(0.01) = 0.06

acw = 0.01
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Figure 11.9.1
Belowground seagrass
biomass (g/m2) for
different levels of oyster
density. Bars display means
plus one standard error.
Groups sharing a common
overbar are not statistically
significantly different based
on Fisher’s LSD
comparisons with
acw = 0.05

Table 11.9.4 Belowground seagrass biomass (g/m2) for different levels of oyster
density

Oyster density

None Low Intermediate High

Mean 34.8a 33.1a 28.3a,b 15.0b

SD 13.4 17.4 17.1 11.0

n 9 10 8 10

*Groups sharing a common superscript have means that are not statistically significantly
different based on Fisher’s LSD comparisons with .acw = 0.05
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In general, to construct k Bonferonni-adjusted confidence intervals with an
overall probability of that all the intervals contain their respective
parameters, we construct each interval at confidence level where

. The mechanics of the computations are identical to those used for
Fisher’s LSD except the value of the t multiplier is modified: . Note that the
application of this idea requires unusual critical values, so that standard tables are
not sufficient. Table 11 (at the end of this book) provides Bonferroni multipliers for
confidence intervals that are based on a t distribution. Software can also be used to
produce appropriate multipliers. Example 11.9.3 illustrates this idea.

Oysters and Seagrass To compute the Bonferroni adjusted experimentwise 95%
( ) confidence intervals for our oyster and seagrass example, we first re-
call that a total of six comparisons are required so that and

[because not all values of df are listed in Table 12, we use 
the closest value to ]. Table 11.9.5 summarizes the collection of in-
tervals in a manner similar to the Fisher LSD intervals in Table 11.9.3.

df(within) = 33
df = 30,t30,0.0083/2 = 2.825

acw = 0.05/6 = 0.0083
aew = 0.05

Example
11.9.3

tdf,acw/2

acw = aew/k
100(1 - acw)%

100(1 - aew)%

Using the method of underlining to visualize the comparisons, we have

High Intermediate Low None
a

b

The underlines indicate that the only significant difference in mean belowground
seagrass biomass is between the high oyster density and no oyster conditions. A
summary of the results is presented in Table 11.9.6. �

Table 11.9.5 Intermediate computations and experimentwise 95% (99.17% comparisonwise) Bonferroni
intervals comparing belowground biomass under different oyster density conditions

Comparison dab = ya - yb SEDab t30,0.025/6 * SEDab Lower 99.17% Upper 99.17%

None–low 1.68 6.828 13.891 -17.6 21.0

None–intermediate 6.48 7.221 14.690 -13.9 26.9

None–high 19.81 6.828 13.891 0.5 39.1

Low–intermediate 4.80 7.049 14.341 -15.1 24.7

Low–high 18.13 6.646 13.520 -0.6 36.9

Intermediate–high 13.33 7.049 14.341 -6.6 33.2
*Intervals not containing zero (i.e., where there is a statistically significant difference between the group means) are in italics.
Note the first two columns (dab and ) are identical to those presented in Table 11.9.3.SEDab

Table 11.9.6 Belowground seagrass biomass (g/m2) for different levels of 
oyster density

Oyster density

None Low Intermediate High

Mean 34.8a 33.1a,b 28.3a,b 15.0b

SD 13.4 17.4 17.1 11.0

n 9 10 8 10

*Groups sharing a common superscript have means that are not statistically significantly
different based on Bonferroni comparisons with .aew = 0.05
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Note that the Fisher LSD intervals and the Bonferroni intervals are not identical
(the Bonferroni are wider due to the smaller value of acw).Additionally, the conclu-
sions differ as well. The Fisher LSD intervals indicate that there is evidence that the
low and high oyster density conditions have different population means, while the
Bonferroni intervals do not indicate a difference. This is because the Bonferroni in-
tervals are less powerful and thus more conservative than the Fisher intervals. Un-
like the Fisher intervals, the Bonferroni intervals are guaranteed to have aew less
than or equal to the desired experimentwise Type I error rate.

Unfortunately, the Bonferroni intervals are often overly conservative so that
the actual value of aew is much less than the desired experimentwise Type I error
rate, and thus too much power is sacrificed for Type I error protection.A more com-
plex procedure that (when sample sizes are equal) is able to achieve the desired ex-
perimentwise error exactly (and thus achieve higher power than Bonferroni) is
Tukey’s Honest Significant Difference.

Tukey’s Honest Significant Differnece

Tukey’s Honest Significant Difference (HSD) is very similar to the Fisher’s LSD
and Bonferonni adjusted intervals, but rather than using t multipliers in the confi-
dence interval formulas, related values from a distribution known as the Studen-
tized range distribution are used. Most computer packages will display all Tukey
HSD pairwise intervals for any desired experimentwise Type I error rate, aew. As an
example, Figure 11.9.2 displays the Tukey output from the statistical software pack-
age R using our oyster and seagrass data. Note that in addition to the intervals, most
software also provides an “adjusted” P-value. Even though multiple comparisons
are being made, if these “adjusted” P-values are compared to aew, an overall exper-
imentwise Type I error rate of aew will still be maintained.

Figure 11.9.2 R software
output presenting
experimentwise 95% Tukey
HSD intervals for the
oyster and seagrass
example

diff lwr upr p-adj
int-high 13.33 5.74- 32.40 0.2515
low-high 18.13 0.15 36.11 0.0475
no-high 19.81 1.34 38.28 0.0318
low-int 4.80 14.27- 23.87 0.9037
zero-int 6.48 13.06- 26.02 0.8063
zero-low 1.68 16.79- 20.15 0.9947

The intervals in Figure 11.9.2 show that the conclusions drawn from the Tukey HSD
intervals match those from the Fisher LSD intervals: the high and low oyster densi-
ty as well as the high and no oyster density means differ significantly. The endpoints
of the experimentwise 95% Tukey HSD intervals are, however, different from both
the Fisher LSD and Bonferroni intervals.

Conditions for Validity

All three multiple comparison procedures as described require the same standard
ANOVA conditions given in Section 11.5. In addition, the validity conditions for
Fisher’s LSD intervals also require that the procedure not be used unless the global
null hypothesis of all means being equal is rejected. In contrast, Tukey’s HSD and
Bonferroni intervals do not require that the global F test be performed a priori
(though the computation of spooled is still needed).To exactly achieve the desired ex-
perimentwise Type I error rate, Tukey’s HSD requires that all samples be the same
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size. If the sample sizes are unequal, the actual error rate will be somewhat less than
the nominal rate resulting in a loss of power.

An advantage of the Bonferroni method is that it is widely applicable and can
easily be generalized to situations beyond ANOVA. One such example appears in
the exercises.

Exercises 11.9.1–11.9.8

11.9.1 A botanist used a completely randomized design
to allocate 45 individually potted eggplant plants to five
different soil treatments. The observed variable was the
total plant dry weight without roots (gm) after 31 days of
growth. The treatment means were as shown in the fol-
lowing table.29 The MS(within) was 0.2246. Use Fisher’s
LSD intervals to compare all pairs of means at

. Present your results in a summary table simi-
lar to Table 11.9.4. (Hint: Take note that all sample sizes
are equal; thus the calculated margin of error need only
be calculated once for all comparisons. There is a total of
10 comparisons possible).

acw = 0.05

11.9.2 Repeat Exercise 11.9.1, but use Bonferroni inter-
vals with .

11.9.3 In a study of the dietary treatment of anemia in
cattle, researchers randomly divided 144 cows into four
treatment groups. Group A was a control group, and
groups B, C, and D received different regimens of dietary
supplementation with selenium. After a year of treat-
ment, blood samples were drawn and assayed for seleni-
um. The accompanying table shows the mean selenium
concentrations (�g/dl).30 The MS(within) from the
ANOVA was 2.071.

aew = 0.05

(a) Compute three Bonferroni-adjusted intervals com-
paring diets B, C, and D to the control (diet A) using

. (Note: This is an example of a situation
for which the Bonferroni comparisons may be pre-
ferred over the Tukey HSD comparisons since not all
comparisons are considered—we are only interested
in comparing the control to each of the other three
treatments.)

aew = 0.05

(b) In the context of the problem, interpret the Bonfer-
roni interval computed in part (a) that compares the
control (group A) to the group that is most different
from it.

11.9.4 Consider the experiment and data in Exercise
11.9.3.The experimentwise 95% Tukey HSD intervals are
displayed using the statistical software package R.

(a) Using the preceding output to support your answer,
is there evidence that each of the groups/diets B, C,
and D, differs from the control, A?

(b) According to the preceding Tukey HSD intervals
and summary of the data in Exercise 11.9.3, diet C
yields the greatest mean selenium concentration
and is significantly higher than the control. If the
goal of the researchers is to find a diet that maxi-
mizes selenium concentration, is diet C the clear
choice? That is, should we rule out diet B, diet D, or
both? Refer to the Tukey HSD intervals to justify
your answer.

11.9.5 Ten treatments were compared for their effect on
the liver in mice.There were 13 animals in each treatment
group. The ANOVA gave . The
mean liver weights are given in the table.31

MS(within) = 0.5842

TREATMENT A B C D E

Mean 4.37 4.76 3.70 5.41 5.38

n 9 9 9 9 9

GROUP MEAN n

A 0.8 36

B 5.4 36

C 6.2 36

D 5.0 36

diff lwr upr

B–A 4.6 3.72 5.48

C–A 5.4 4.52 6.28

D–A 4.2 3.32 5.08

C–B 0.8 0.08- 1.68

D–B 0.4- 1.28- 0.48

D–C 1.2- 2.08- 0.32-

TREATMENT
MEAN LIVER 

WEIGHT (GM) TREATMENT
MEAN LIVER 

WEIGHT (GM)

1 2.59 6 2.84

2 2.28 7 2.29

3 2.34 8 2.45

4 2.07 9 2.76

5 2.40 10 2.37
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(a) Use Fisher LSD intervals to compare all pairs of
means with and summarize the results in
a table similar to Table 11.9.4. [Time Saving Hints:
First note that the sample sizes are equal; hence the
same margin of error ( ) can be used for all
comparisons. Furthermore, since a summary table is
desired, the actual intervals need not be computed:
Simply check if . If it is, then the
computed interval would not contain zero, so the dif-
ference is significant. Finally, note that not all possi-
ble comparisons (there are 45) need to be checked:
when using the method of underlining to summarize
results, once a subarray of groups has been under-
lined all comparisons within the subarray are consid-
ered nonsignificant.]

(b) If Bonferroni’s method is used with in-
stead of Fisher’s LSD in part (a), are any pairs of
means significantly different?

11.9.6 Consider the data from Example 11.2.1 on the
weight gain of lambs. The MS(within) from the ANOVA
for these data was 23.333. The sample mean of diet 2 was
15 and of diet 1 was 11.
(a) Use the Bonferroni method to construct a 95% con-

fidence interval for the difference in population
means of these two diets (assuming that intervals will
also be computed for the other two possible compar-
isons as well).

(b) Suppose that the comparison in part (a) was the only
comparison of interest (i.e., one comparison rather
than three). How would the interval in part (a)
change? Would it be wider, narrower, or stay the
same? Explain.

11.9.7 As mentioned in this section, the Bonferroni pro-
cedure can be used in a variety of circumstances. Con-
sider the plover nesting example from Section 10.5,
which compares plover nest locations across three years.
The percentage distribution appears in the following
table.

aew = 0.05

|dab| 7 t * SEDab

t * SEDab

acw = 0.05

Using a Bonferonni adjustment to achieve ,
for which pair(s) of years is there evidence of a significant
difference in nesting location distributions? Indicate the
value of acw used.

11.9.8 Exercise 10.5.1 presented the following problem:
Patients with painful knee osteoarthritis were randomly
assigned in a clinical trial to one of five treatments: glu-
cosamine, chondroitin, both, placebo, or Celebrex, the
standard therapy. One outcome recorded was whether or
not each patient experienced substantial improvement in
pain or in ability to function.The data are given in the fol-
lowing table.

aew = 0.10

YEAR
LOCATION 2004 2005 2006

Agricultural field (AF) 48.8 30.2 55.3

Prairie dog habitat (PD) 39.5 60.3 25.5

Grassland (G) 11.6 9.5 19.1

Total 99.9* 100.0 99.9*

*The sums of the 2004 and 2006 percentages differ
from 100% due to rounding.

The P-value for the chi-square test of these data was
found to be 0.007, indicating a significant difference in
the distribution of nesting locations across the three
years with . Considering reduced tables and
using chi-square tests to compare nesting distributions
for pairs of years, we obtain the following P-values:

a = 0.10

YEARS COMPARED P-VALUE

2004 to 2005 0.100

2004 to 2006 0.307

2005 to 2006 0.001

SUCCESSFUL OUTCOME
TREATMENT SAMPLE SIZE NUMBER PERCENT

Glucosamine 317 192 60.6

Chondroitin 318 202 63.5

Both 317 208 65.6

Placebo 313 178 56.9

Celebrex 318 214 67.3

(a) Suppose we wished to compare only the success
rates of each of the treatments to the control (place-
bo) using four separate chi-square tests.The P-
values for these comparisons follow. Using a
Bonferroni adjustment with , which treat-
ments perform significantly different from the place-
bo? Indicate the value of acw used.

aew = 0.05

2 * 2

TREATMENTS COMPARED TO PLACEBO P-VALUE

Glucosamine 0.346

Chondroitin 0.088

Both 0.024

Celebrex 0.007

(b) The P-value of the chi-square test that considers the
entire table is 0.054, which provides insuffi-
cient evidence to demonstrate any difference among
the success rates of the five treatments using

. Explain why this result does not contradict
the results of part (a). [Hint: How many comparisons
are being considered by this chi-square test as com-
pared to the number of comparisons in part (a)? To
achieve using a Bonferroni adjustment,
how large would acw need to be? How large was it in
part (a)? How does conducting many tests with a
Bonferroni adjustment affect the power of each
test?]

aew = 0.05

a = 0.05

5 * 2
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11.10 Perspective
In Chapter 11 we have introduced some statistical issues that arise when analyzing
data from more than two samples and we have considered some classical methods
of analysis. In this section we review these issues and briefly mention some alterna-
tive methods of analysis.

Advantages of Global Approach

Let us recapitulate the advantages of analyzing I independent samples by a global
approach rather than by viewing each pairwise comparison separately.

1. Multiple comparisons In Section 11.1 we saw that the use of repeated t tests
can greatly inflate the overall risk of Type I error. Some control of Type I error
can be gained by the simple device of beginning the data analysis with a glob-
al F test. For more stringent control of Type I error, other multiple comparison
methods are available (e.g., Bonferroni and Tukey HSD) and are described in
optional Section 11.9. (Note that the problem of multiple comparisons is not
confined to an ANOVA setting.)

2. Use of structure in the treatments or groups Analysis of suitable combinations
of group means can be very useful in interpreting data. Many of the relevant
techniques are beyond the scope of this book. The discussion in optional
Sections 11.7 and 11.8 gave a hint of the possibilities. In Chapter 12 we will dis-
cuss some ideas that are applicable when the treatments themselves are quan-
titative (for instance, doses).

3. Use of a pooled SD We have seen that pooling all of the within-sample variabil-
ity into a single pooled SD leads to a better estimate of the common population
SD and thus to a more precise analysis. This is particularly advantageous if the
individual sample sizes (n’s) are small, in which case the individual SD estimates
are quite imprecise. Of course, using a pooled SD is proper only if the popula-
tion SDs are equal. It sometimes happens that one cannot take advantage of
pooling the SDs because the assumption of equal population SDs is not tenable.
One approach that can be helpful in this case is to analyze a transformed vari-
able, such as log(Y); the SDs may be more nearly equal in the transformed scale.

Other Experimental Designs

The techniques of this chapter are valid only for independent samples. But the basic
idea—partitioning variability within and between treatments into interpretable
components—can be applied in many experimental designs. For instance, all the
techniques discussed in this chapter can be adapted (by suitable modification of the
SE calculation) to analysis of data from an experiment with more than two experi-
mental factors or situations for which all or some experimental factors are numeric
rather than categorical. These and related techniques belong to the large subject
called analysis of variance, of which we have discussed only a small part.

Nonparametric Approaches

There are k-sample analogs of the Wilcoxon-Mann-Whitney test and other non-
parametric tests (e.g., the Kruskal–Wallis test). These tests have the advantage of
not assuming underlying normal distributions. However, many of the advantages of
the parametric techniques—such as the use of linear combinations—do not easily
carry over to the nonparametric setting.
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Ranking and Selection

In some investigations the primary aim of the investigator is not to answer research
questions about the populations but simply to select one or several “best” popula-
tions. For instance, suppose 10 populations (stocks) of laying hens are available and
it is desired to select the one population with the highest egg-laying potential. The
investigator will select a random sample of n chickens from each stock and will ob-
serve for each chicken of eggs laid in 500 days.32 One relevant
question is: How large should n be so that the stock that is actually best (has the
highest ) is likely to also appear best (have the highest )? This and similar ques-
tions are addressed by a branch of statistics called ranking and selection theory.

Ym

Y = total number

Supplementary Exercises 11.S.1–11.S.19

(Note: Exercises preceded by an asterisk refer to optional
sections.)

11.S.1 Consider the research described in Exercise 11.4.6
in which 10 women in an aerobic exercise class, 10 women
in a modern dance class, and a control group of 9 women
were studied. One measurement made on each woman
was change in fat-free mass over the course of the 16-
week training period. Summary statistics are given in the
following table.8 The ANOVA SS(between) is 2.465 and
the SS(within) is 50.133.

AEROBICS MODERN DANCE CONTROL

Mean 0.00 0.44 0.71

SD 1.31 1.17 1.68

n 10 10 9

(a) State in words, in the context of this problem, the null
hypothesis that is tested by the analysis of variance.

(b) Construct the ANOVA table and test the null hy-
pothesis. Let .

11.S.2 Refer to Exercise 11.S.1. The F test is based on cer-
tain conditions concerning the population distributions.
(a) State the conditions.
(b) The following dotplots show the raw data. Based on

these plots and on the information given in Exercise
11.S.1, does it appear that the F test conditions are
met? Why or why not?

a = 0.05

11.S.3 In a study of the eye disease retinitis pigmentosa
(RP), 211 patients were classified into four groups ac-
cording to the pattern of inheritance of their disease. Vi-
sual acuity (spherical refractive error, in diopters) was
measured for each eye, and the two values were then av-
eraged to give one observation per person. The accompa-
nying table shows the number of persons in each group
and the group mean refractive error.33 The ANOVA of
the 211 observations yields and

. Construct the ANOVA table and
carry out the F test at .a = 0.05
SS(within) = 2,506.8

SS(between) = 129.49
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11.S.4 (Continuation of Exercise 11.S.3) Another ap-
proach to the data analysis is to use the eye, rather than
the person, as the observational unit. For the 211 per-
sons there were 422 measurements of refractive error;
the accompanying table summarizes these measure-
ments. The ANOVA of the 422 observations yields

and .SS(within) = 5,143.9SS(between) = 258.97

GROUP
NUMBER OF 

PERSONS
MEAN REFRACTIVE 

ERROR

Autosomal
dominant RP

27 +0.07

Autosomal
recessive RP

20 -0.83

Sex-linked RP 18 -3.30
Isolate RP 146 -0.84

Total 211

GROUP
NUMBER OF 

EYES
MEAN REFRACTIVE 

ERROR

Autosomal 
dominant RP

54 +0.07

Autosomal 
recessive RP

40 -0.83

Sex-linked RP 36 -3.30
Isolate RP 292 -0.84

Total 422
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(a) Construct the ANOVA table and bracket the P-
value for the F test. Compare with the P-value ob-
tained in Exercise 11.S.3. Which of the two P-values
is of doubtful validity, and why?

(b) The mean refractive error for the sex-linked RP pa-
tients was . Calculate the standard error of this
mean two ways: (i) regarding the person as the ob-
servational unit and using spooled from the ANOVA
of Exercise 11.S.3; (ii) regarding the eye as the obser-
vational unit and using spooled from the ANOVA of
this exercise. Which of these standard errors is of
doubtful validity, and why?

*11.S.5 In a study of the mutual effects of the air pollu-
tants ozone and sulfur dioxide, Blue Lake snap beans
were grown in open-top field chambers. Some chambers
were fumigated repeatedly with sulfur dioxide. The air
in some chambers was carbon filtered to remove ambi-
ent ozone. There were three chambers per treatment
combination, allocated at random. After one month of
treatment, total yield (kg) of bean pods was recorded
for each chamber, with results shown in the accompany-
ing table.34 For these data, and

. Complete the ANOVA table and
carry out the F test at .a = 0.05
SS(within) = 0.27513

SS(between) = 1.3538

-3.30

Prepare an interaction graph (like Figure 11.7.3).

*11.S.6 Consider the data from Exercise 11.S.5. For
these data, , ,

, and .
(a) Construct the ANOVA table.
(b) Carry out an F test for interactions; use .
(c) Test the null hypothesis that ozone has no effect on

yield. Use .

*11.S.7 Refer to Exercise 11.S.5. Define contrasts to
measure each effect specified, and calculate the value of
each contrast.
(a) The effect of sulfur dioxide in the absence of ozone
(b) The effect of sulfur dioxide in the presence of ozone
(c) The interaction between sulfur dioxide and ozone

*11.S.8 (Continuation of Exercises 11.S.6 and 11.S.7) For
the snap-bean data, use a t test to test the null hypothesis of
no interaction against the alternative that sulfur dioxide is
more harmful in the presence of ozone than in its absence.

a = 0.05

a = 0.05

SS(within) = 0.275SS(interaction) = 0.166
SS(sulfur) = 0.492SS(ozone) = 0.696

Let . How does this compare with the F test of Ex-
ercise 11.S.6(b) (which has a nondirectional alternative)?

*11.S.9 (Computer exercise) Refer to the snap-bean data
of Exercise 11.S.5.Apply a reciprocal transformation to the
data.That is, for each yield value Y, calculate .

(a) Calculate the ANOVA table for and carry out the
F test.

(b) It often happens that the SDs are more nearly equal
for transformed data than for the original data. Is
this true for the snap-bean data when a reciprocal
transformation is used?

(c) Make a normal probability plot of the residuals,
. Does this plot support the condition that

the populations are normal?

*11.S.10 (Computer exercise—continuation of Exercises
11.S.8 and 11.S.9) Repeat the test in Exercise 11.S.7 using 
instead of Y, and compare with the results of Exercise 11.S.7.

11.S.11 Suppose a drug for treating high blood pressure
is to be compared to a standard blood pressure drug in a
study of humans.

(a) Describe an experimental design for a study that makes
use of blocking. Be careful to note which parts of the
design involve randomness and which parts do not.

(b) Can the experiment you described in part (a) involve
blinding? If so, explain how blinding could be used.

11.S.12 In a study of balloon angioplasty, patients with
coronary artery disease were randomly assigned to one of
four treatment groups: placebo, probucol (an experimen-
tal drug), multivitamins (a combination of beta carotene,
vitamin E, and vitamin C), or probucol combined with
multivitamins. Balloon angioplasty was performed on
each of the patients. Later, “minimal luminal diameter” (a
measurement of how well the angioplasty did in dilating
the artery) was recorded for each of the patients. Summa-
ry statistics are given in the following table.35

Y¿

(yœij - yœi)

Y¿
Yœ = 1/Y

a = 0.05

OZONE ABSENT OZONE PRESENT
SULFUR DIOXIDE SULFUR DIOXIDE

ABSENT PRESENT ABSENT PRESENT

1.52 1.49 1.15 0.65

1.85 1.55 1.30 0.76

1.39 1.21 1.57 0.69

Mean 1.587 1.417 1.340 0.700
SD 0.237 0.181 0.213 0.056

PLACEBO PROBUCOL
MULTI-
VITAMINS

PROBUCOL AND
MULTIVITAMINS

n 62 58 54 56

Mean 1.43 1.79 1.40 1.54

SD 0.58 0.45 0.55 0.61

SOURCE DF SS MS F

Between treatments ____ 5.4336 ____ ____

Within treatments ____ ____ ____ ____

Total 229 73.9945 ____ ____

(a) Complete the ANOVA table and bracket the P-
value for the F test.

(b) If , do you reject the null hypothesis of
equal population means? Why or why not?
a = 0.01
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*11.S.13 Refer to Exercise 11.S.12. Define contrasts to
measure each effect specified, and calculate the value of
each contrast.
(a) The effect of probucol in the absence of multivitamins
(b) The effect of probucol in the presence of multivitamins
(c) The interaction between probucol and multivitamins

*11.S.14 Refer to Exercise 11.S.12. Construct a 95% con-
fidence interval ( ) for the effect of probucol in
the absence of multivitamins. That is, construct a 95%
confidence interval for .

*11.S.15 Refer to Exercise 11.S.12. Assuming all possible
comparisons of group means will be computed, use the
Bonferroni method to construct a 95% confidence inter-
val for the effect of probucol in the absence of multivita-
mins. That is, construct a Bonferroni-adjusted 95%
( ) confidence interval for .

*11.S.16 Three college students collected several pill-
bugs from a woodpile and used them in an experiment in
which they measured the time, in seconds, that it took for
a bug to move 6 inches within an apparatus they had cre-
ated. There were three groups of bugs: one group was ex-
posured to strong light, for one group the stimulus was
moisture, and a third group served as a control. The data
are shown in the following table.36

mprobucol - mplaceboaew = 0.05

mprobucol - mplacebo

acw = 0.05

LIGHT MOISTURE CONTROL

23 170 229
12 182 126

29 286 140

12 103 260

5 330 330

47 55 310

18 49 45

30 31 248

8 132 280

45 150 140

36 165 160

27 206 192

29 200 159

33 270 62

24 298 180

17 100 32

11 162 54

25 126 149

6 229 201

34 140 173

Mean 23.6 169.2 173.5
SD 12.3 83.5 86.0

n 20 20 20

Clearly the SDs show that the variability is not constant
between groups, so a transformation is needed. Taking
the natural logarithm of each observation results in the
following dotplots and summary statistics.

For the transformed data, the ANOVA SS(between) is
53.1103 and the SS(within) is 23.5669.

(a) State the null hypothesis in symbols.

(b) Construct the ANOVA table and test the null hy-
pothesis. Let .

(c) Calculate the pooled standard deviation, spooled.

*11.S.17 Mountain climbers often experience several
symptoms when they reach high altitudes during their
climbs. Researchers studied the effects of exposure to
high altitude on human skeletal muscle tissue. They set
up a factorial experiment in which subjects
trained for six weeks on a bicycle. The first factor was
whether subjects trained under hypoxic conditions (cor-
responding to an altitude of 3,850m) or normal condi-
tions. The second factor was whether subjects trained at
a high level of energy expenditure or at a low level
(25% less than the high level). There were either 7 or 8
subjects at each combination of factor levels. The ac-
companying table shows the results for the response
variable “percentage change in vascular endothelial
growth factor mRNA.”37

2 * 2

a = 0.05

5

4

3

2

Light Moisture Control

In
(s

ec
on

ds
)

LIGHT MOISTURE CONTROL

Mean 2.99 4.98 4.99

SD 0.65 0.62 0.66

Prepare an interaction graph (like Figure 11.7.3).

HYPOXIC NORMAL

ENERGY LOW LEVEL HIGH LEVEL LOW LEVEL HIGH LEVEL

Mean 117.7 173.2 95.1 114.6

No. of 
patients

7 7 8 8
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dishes of 5 g of contaminated feed were not treated with
the gas. This experiment was repeated twice, for a total of
three trials, as only two petri dishes could be placed in the
pressurized gas chamber at any given time. Twenty-four
hours after inoculation and gassing, the number of bacte-
rial colonies (colony forming units or cfu) on each dish
were counted. Because the data were highly skewed, the
log(cfu) was analyzed.38

(a) Identify the blocking, treatment, and response vari-
ables in this problem.

(b) Complete the following ANOVA table for this
blocked analysis.

(c) Using the complete table from part (b), is there evi-
dence that the ammonia gas treatment affects the
contamination level (i.e., mean log cfu)? Use

.

(d) Do the preceding analysis and information allow you
to infer that ammonia reduces contamination? If not,
what other information would be necessary to make
such a claim?

a = 0.05

SOURCE DF SS MS F RATIO

Between hypoxic 
and normal

1 12126.5 ____ ____

Between energy level 1 10035.7 ____ ____

Interaction 1 ____ ____ ____

within groups 26 56076.0 ____ ____

Total 29 80738.7 ____ ____

DF SS MS F RATIO

Between treatments 1 1.141 1.141 7.107
Between trials 2 3.611 ____ ____

Within groups 8 ____ ____

Total 11 6.036

*11.S.18 Consider the data from Exercise 11.S.17.

(a) Complete the following ANOVA table.

(b) Conduct a test for interactions. Use .

(c) Based on your conclusions in part (b), is it sensible to
examine the main effects of condition and of energy
level?

(d) Test the null hypothesis that energy level has no ef-
fect on the response. Use .

(e) Test the null hypothesis that the effect on the re-
sponse of hypoxic training is the same as the effect
on the response of normal training. Use .

*11.S.19 In a study to examine the utility of using ammo-
nia gas to sanitize animal feeds, researchers inoculated
corn silage with a strain of Salmonella. Next, two petri
dishes of 5 g of contaminated feed were exposed to con-
centrated anhydrous ammonia gas and two control petri

a = 0.05

a = 0.05

a = 0.05


